

Beginning Raku
Arne Sommer

Version 1.01, 28.12.2019

Table of Contents
Introduction. 1

The Little Print . 1

Reading Tips . 2

Content . 3

1. About Raku. 5

1.1. Rakudo. 5

1.2. Running Raku in the browser . 6

1.3. REPL. 6

1.4. One Liners . 8

1.5. Running Programs . 9

1.6. Error messages . 9

1.7. use v6. 10

1.8. Documentation . 10

1.9. More Information. 13

1.10. Speed . 13

2. Variables, Operators, Values and Procedures. 15

2.1. Output with say and print . 15

2.2. Variables . 15

2.3. Comments. 18

2.4. Non-destructive operators . 18

2.5. Numerical Operators . 19

2.6. Operator Precedence . 21

2.7. Values . 23

2.8. Variable Names . 25

2.9. constant. 26

2.10. Sigilless variables . 27

2.11. True and False . 27

2.12. // . 30

3. The Type System. 33

3.1. Strong Typing . 33

3.2. ^mro (Method Resolution Order) . 35

3.3. Everything is an Object . 36

3.4. Special Values . 37

3.5. :D (Defined Adverb) . 39

3.6. Type Coersion . 40

3.7. Comparison Operators . 43

3.8. but (True and False, but …) . 47

4. Control Flow . 51

4.1. Blocks. 51

4.2. Ranges (A Short Introduction) . 51

4.3. loop . 52

4.4. for . 53

4.5. Infinite Loops. 57

4.6. while . 57

4.7. until . 58

4.8. repeat while . 59

4.9. repeat until. 59

4.10. Loop Summary . 60

4.11. if . 61

4.12. given . 62

4.13. with . 62

4.14. ?? !! . 65

4.15. do . 66

4.16. when . 66

4.17. Loop Manipulation. 67

5. Numbers . 71

5.1. Octal, Hex, Binary … . 71

5.2. Unicode Numbers . 72

5.3. Not a Number . 73

5.4. N_U_M_B_E_R_S. 73

5.5. Floating Point Numbers . 73

5.6. Rational Numbers. 74

5.7. narrow. 75

5.8. sign . 75

5.9. Rounding . 76

5.10. NaN (Not a Number) . 77

5.11. =~= . 78

5.12. is-prime (Prime Numbers) . 78

5.13. Modulo and variants . 79

5.14. Other Operators . 80

6. Basic Input and Output . 85

6.1. Newlines . 85

6.2. Stringification . 86

6.3. Output . 89

6.4. printf . 91

6.5. Input from the user . 94

7. Strings . 97

7.1. Unicode . 97

7.2. join . 101

7.3. split . 101

7.4. words. 101

7.5. comb . 102

7.6. flip . 103

7.7. substr (Partial Strings) . 103

7.8. Changing Case . 105

7.9. x (String Repetition Operator) . 107

7.10. succ . 108

7.11. pred . 108

7.12. Quoting . 109

7.13. Multi-line Strings (Heredocs). 110

8. Arrays and Lists . 113

8.1. , (List Operator) . 113

8.2. [] (Array Constructor) . 114

8.3. <xxx> (Quote Word) . 115

8.4. Empty . 115

8.5. List Elements . 115

8.6. pop / push / shift / unshift . 116

8.7. rotate (List Rotation) . 119

8.8. List of Lists . 119

8.9. Flattening Lists . 119

8.10. Array Slice . 120

8.11. splice . 121

8.12. map . 123

8.13. sort . 125

8.14. reverse . 126

8.15. Array with Limits . 127

8.16. Typed Array. 127

8.17. Shaped Array. 128

8.18. unique (Lists Without Duplicates) . 129

8.19. xx (List Repetition Operator) . 129

8.20. List Selection . 130

8.21. min / max . 132

8.22. Random Values . 133

8.23. permutations. 137

8.24. combinations. 138

8.25. but (Array) . 139

9. Pair and Hashes . 141

9.1. Pair. 141

9.2. Hash. 142

9.3. Hash Constructor { } . 143

9.4. Hash Assignment and Values . 144

9.5. keys . 144

9.6. values . 145

9.7. kv (keys + values) . 145

9.8. Typed Hash . 146

9.9. Shaped Hash . 147

9.10. invert. 148

9.11. antipairs . 149

9.12. Hash Slices . 149

9.13. Hash Lookup . 149

9.14. Hash Deletion . 150

9.15. Hash Duplicate Values . 150

9.16. Hash Usage. 151

9.17. Grep and Smartmatch. 152

9.18. Hash (method). 152

9.19. but (Hash). 153

10. Procedures. 155

10.1. Procedures Without Arguments . 155

10.2. Procedures With Arguments . 155

10.3. @_. 156

10.4. Placeholder Variables . 156

10.5. Procedures as variables . 157

10.6. Type Constraints. 158

10.7. return . 159

10.8. @*ARGS . 161

10.9. MAIN . 162

10.10. WHY . 163

10.11. IntStr Gotcha . 166

10.12. Multiple Dispatch . 166

10.13. Procedure Arguments . 169

10.14. * (Slurpy Operator) . 175

10.15. Blocks Revisited . 179

10.16. Calling a procedure specified in a variable . 180

10.17. Procedures in Procedures . 181

11. Regex Intro . 183

11.1. What is a Regex?. 183

11.2. Making a Regex. 184

11.3. ~~ (Smartmatch Operator) . 185

11.4. Partial Strings . 185

11.5. Beginning or end of a string . 187

11.6. Regex Metacharacters . 188

11.7. $/ (Match Object). 189

11.8. Special Characters . 189

11.9. Capturing and Grouping. 190

11.10. Character Classes . 192

11.11. Custom Character Classes . 195

11.12. Non-greedy . 195

11.13. Backwards References . 196

11.14. Using a Regex . 197

11.15. String Substitution . 197

11.16. Substitution Tuning. 201

11.17. Transliteration . 201

11.18. trim / trim-leading / trim-trailing . 203

11.19. split and grep . 204

11.20. Comments . 204

12. Modules . 205

12.1. Precompilation . 205

12.2. Module Administration with zef . 205

12.3. Using Modules (use). 209

12.4. Writing Modules. 211

13. Files and Directories . 213

13.1. Reading Files . 213

13.2. slurp. 215

13.3. open / close . 216

13.4. INPUT OUTPUT - IO . 216

13.5. Writing Files . 217

13.6. get. 219

13.7. Temporary Files . 221

13.8. File tests . 224

13.9. Binary Files . 225

13.10. Directories . 231

14. Date and Time. 239

14.1. time . 239

14.2. now . 239

14.3. Leap Seconds. 239

14.4. Instant . 240

14.5. Timing . 246

15. Writing a Module . 249

15.1. unit module . 249

15.2. is export . 249

15.3. pm6 . 249

15.4. use lib . 250

15.5. Timing Fibonacci . 251

15.6. Dictionaries . 253

16. Ranges and Sequences . 257

16.1. Ranges . 257

16.2. lazy. 258

16.3. Sequences. 260

16.4. state . 265

16.5. Truly Random Flip-Flop . 265

16.6. Flip-Flop Problems. 266

16.7. gather / take . 268

16.8. Closures . 274

17. Classes. 277

17.1. has . 277

17.2. new . 277

17.3. method . 278

17.4. Named Arguments . 281

17.5. Public Class Variables . 281

17.6. self . 281

17.7. Custom «new» . 281

17.8. Custom BUILD . 282

17.9. Wrong Start Value . 283

17.10. Object Comparison . 284

17.11. A Person Class . 286

17.12. Output . 291

17.13. Private Methods . 294

17.14. Inheritance . 296

17.15. Roles . 299

17.16. Multiple Dispatch . 301

17.17. A Fallback Method . 302

17.18. .? . 305

17.19. .+. 305

17.20. .* . 306

17.21. handles (Delegation) . 307

17.22. Calling a method specified in a variable . 308

Appendix 1. Docker . 309

Installing Rakudo Star with Docker . 309

Appendix 2. Solutions . 313

Chapter 1 . 313

Chapter 2 . 313

Chapter 3 . 314

Chapter 4 . 315

Chapter 5 . 316

Chapter 6 . 320

Chapter 7 . 320

Chapter 8 . 323

Chapter 9 . 327

Chapter 10 . 327

Chapter 11 . 329

Chapter 12 . 332

Chapter 13 . 333

Chapter 14 . 340

Chapter 15 . 342

Chapter 16 . 346

Chapter 17 . 347

Appendix 3. Beware of . 351

A3.1 length. 351

A3.2 Objects are not strings. 351

A3.3 See also . 351

A3.4 Syntax Summary. 351

Appendix 4. Raku Background and History. 353

6.a and 6.b . 353

6.c. 353

6.d . 353

6.e. 353

About Versions . 353

Index . 355

Introduction
This book is written as a companion textbook and reference for my 2 day course «Beginning Raku».
See http://course.perl6.eu/beginning for details.

This book and the overhead presentation is in English, but the course can also be held in
Norwegian.

I have chosen to cover as much of Raku as possible, and the result is a book that may use too little
time on important features. (And I have certainly missed some features, as Raku is a large
language.) I have tried to be as detailed as necessary to fully explain the feature. I have added links
to further reading when I haven’t covered everything. (I haven’t always covered every corner case
of a feature, so if you want to master a certain feature, do look it up in the online documentation.)

You need a laptop (Linux, Windows, Mac) that you can install Raku (or Docker) on.

You need some prior programming knowledge, in any language.

This icon is used to show important information.

The only way to really learn a programming language is by using it. Write programs!

This book has several sample programs. They are shown like this, often with a file name:

File: echo-all

.say for lines;

Feel free to use the code samples, either as they are or as inspiration for your own work. Atribution
would be nice, but isn’t required.

Course participants will get the sample programs as a Docker Image bundled with
Raku, and as a zip file.

This icon is used to show tips.

We’ll show where you can look for more information in the More Information section in the first
chapter.

If you find an error, send an email to course@perl6.eu [mailto:course@perl6.eu] with
«Error» as subject so that I can fix it.

The Little Print
I am giving away this first version of the book for free. I do reserve the right to print the book and
sell it. You are free to distribute the pdf file or print it. You are also free to distribute printed copies,
but you may not get paid for it.

1

http://course.perl6.eu/beginning
mailto:course@perl6.eu

The book is written i Asciidoctor.

 This icon is used to show warnings.

Reading Tips
If you read the book from cover to cover, ignore forward references. They are meant as a help
when the book is used as a reference.

Look up backward references if you have forgotten the content.

Happy Reading. And Coding.

Arne Sommer, Oslo. December 2019

2

Content
Chapter 1 Introduces Raku.

Chapter 2 Presents variables, operators, values and output.

Chapter 3 Presents the type system, and the comparison operators.

Chapter 4 Presents control flow; blocks, conditional execution and loops.

Chapter 5 Presents numbers.

Chapter 6 Presents basic input (reading from the terminal) and output (writing to the screen).

Chapter 7 Presents strings and Unicode.

Chapter 8 Presents arrays, lists, and random values.

Chapter 9 Presents hashes.

Chapter 10 Presents procedures.

Chapter 11 Presents Regexes

Chapter 12 Presents modules.

Chapter 13 Presents files and directories.

Chapter 14 Presents date, time, and timing of code.

Chapter 15 Presents how to write a module for local usage.

Chapter 16 Presents ranges, sequences, and closures.

Chapter 17 Presents Classes.

Appendix 1 Presents Docker as an alternative to normal installation of Raku.

Appendix 2 Presents solutions to the exercises in the book.

Appendix 3 Presents some warnings.

Appendix 4 Presents a short history of Raku, and some thoughts on the future.

And finally an alphabetical index.

3

4

Chapter 1. About Raku
Raku was formerly known as Perl 6, so you will see that name for quite some time before the
transition is completely finished.

1.1. Rakudo

Rakudo is a production ready implementation of
Raku, written in NQP («Not Quite Perl»), running
on the dedicated MoarVM («Metamodel On A
Runtime») virtual machine.

MoarVM is available for Windows, MacOS and
Linux (and some other operating systems).

Rakudo has monthly releases. (Or at least,
intends to have them.)

Implementations of Rakudo running on jvm and
javascript (node.js) are not as complete.

MoarVM
NQP

Rakudo

Win Mac Linux ...

Figure 1. The Rakudo implementation of Raku

1.1.1. Rakudo Star

Rakudo Star is released every third month. This is Rakudo bundled with documentation (the p6doc
command, see section 1.8, “Documentation”) and a selection of useful modules (especially the
module installer zef; see section 12.2, “Module Administration with zef”).

This is the easiest way to install Rakudo.

If you are running Linux or MacOS, using Docker and a Rakudo image is an option. See Appendix 1.
Docker before deciding.

1.1.2. Installing Rakudo Star

Rakudo Star: Go to https://rakudo.org/files

5

https://rakudo.org/files

Figure 2. Rakudo Star Download Page

• Windows & Mac: Use the installation binary. See https://rakudo.org/files/

• Linux: Use the normal package system (Debian, Centos, Fedora, openSUSE, Ubuntu and Alpine).
See https://nxadm.github.io/rakudo-pkg/

More information: https://raku.org/downloads/

1.2. Running Raku in the browser
It is possible to run programs in the browser, on these websites:

• https://glot.io/new/perl6

• https://tio.run/#perl6

Note that they do not support modules, and anything changing the state of the server (as file
operations) is bound to fail. REPL mode (see the next section) may be a better choice, but that does
require installation of Raku.

1.3. REPL
Run raku without any arguments to start it in interactive, or REPL (Read-Eval-Print Loop), mode.

$ raku
To exit type 'exit' or '^D'
> say 12; my $a = False;
12
> my $a = False;
False

6

https://rakudo.org/files/
https://nxadm.github.io/rakudo-pkg/
https://raku.org/downloads/
https://glot.io/new/perl6
https://tio.run/#perl6

Note that REPL mode always displays a value. If your code prints a value, that is fine. But if not, REPL
will print whatever the last expression evaluated to.

To save space I sometimes show the output on the same line as the code:

> my $a = False; # -> False

1.3.1. Command Line Completion

You can type a partial command, and use <TAB> to expand it. If there are more than one possible
commands, use <TAB> again to cycle through them.

Use the up and down arrow key to cycle trough the command history.

If the arrow keys don’t work as expected, you must install Linenoise (available for
all plattforms, and included with Rakudo Star) manually.

Linenoise is not included in the native packages (Linux). But the good news is that
you don’t need «sudo» to install modules.

Exercise 1.1

Install Rakudo Star (or Docker and one (or both) of the Docker Images) if you haven’t done so
already.

Start REPL, and check the version with $*PERL.compiler (or raku -v in the shell).

Linenoise

The raku module Linenoise is included with Rakudo Star. It gives REPL command line history, and
the possibility to edit commands, just as a normal shell.

The history is saved to a file, and loaded the next time you start REPL.

If you don’t have it (as shown when using the arrow keys in REPL), install it manually.

$ zef install Linenoise

Note that since this module has binary components, you’ll need a working C
compiler.

Everything needed for building Linenoise comes in the «build-essential» package
on Debian-based system (such as Ubuntu).

If you don’t have «zef», start with installing it. See https://github.com/ugexe/zef for instructions. Or

7

https://github.com/ugexe/zef

consider installing Rakudo Star, or using Docker.

lrwrap

On a Unix-like system the «rlwrap» library can also be used. It can be installed like this, on a Debian
based system:

sudo apt install rlwrap

zef is not required.

1.4. One Liners
We can use the command line to give Raku a line of code to execute with the «-e» option:

$ raku -e 'say e';
2.718281828459045

$ raku -e 'say "hello"'
hello

I use say to display data on the screen. It adds a newline at the end.

I could have used print, but then I have to specify the newline manually.

See section 6.3, “Output” for the details.

On Windows you have to swap the quotes:

$ raku -e "say 'hello'";
hello

You can get away with Windows quoting on Unix like systems, sometimes…

$ raku -e 'say "Hello, World!"'
Hello, World!

But shell escape characters will we parsed by the shell:

$ raku -e "say 'Hello, World!'"
bash: !': event not found

8

1.4.1. Command Line Options

The Raku interpreter supports several command line options. The previous section presented -e.

Run raku --help for a complete list.

1.5. Running Programs
In all the examples in this book I type this to run a program:

$ raku program

The first line of the code file is:

#! /usr/bin/env raku

On a Unix like system we can execute the file without specifying raku, as the system will read the
first line and start Raku for us automatically - as long as the file has the executable flag set:

$./program

Exercise 1.2

Make a text file with a text editor (like emacs, vi or Notepad) called «hello-world» (or «hello-
world.p6» on Windows) with the following content:

File: hello-world

#! /usr/bin/env raku

say "Hello, World!"

And execute it.

Note that if you run the program by double cliking on it (in Windows), it will
open a terminal window for the output, print to it, and close it again on program
termination. Well before anybody can read the text. So open a terminal window,
and type the command there.

1.6. Error messages
Raku tries very hard to give useful error messages.

9

• Compile Time Errors are given with the polite «===SORRY!===».

• Run Time Errors are given without it.

The destinction may not be that important for an average user, but errors caught at compile time
are preferable as no code has actually been executed yet.

1.7. use v6
If you try to run a Raku program with Perl 5, you will get an error message complaining about the
syntax.

$ perl hello-world
String found where operator expected at content/code/hello-world line 3, near "say
"Hello, World!""
 (Do you need to predeclare say?)

If you add the use v6; line in the files, Perl 5 will give a much nicer error message.

Using this directive tells Perl 5 to require a version that it doesn’t have, so it will fail - without trying
to parse and execute the program.

$ perl -e"use v6"
Perl v6.0.0 required--this is only v5.26.2, stopped at -e line 1.
BEGIN failed--compilation aborted at -e line 1.

I have not done this in the programs presented in this course.

It is possible to specify a specific version of Raku as well. E.g. use v6.c as I have done in some cases
in the code. I did that to pressure users of earlier (pre-release versions; 6.a and 6.b) to upgrade. The
downside is that the code will still use 6.c even when newer versions are available. (6.d was
released in november 2018.)

See Appendix 4. Raku Background and History for more information.

1.8. Documentation
The documentation for Raku is pretty good, and is extended all the time. It is available online (on
the web) and offline (local).

1.8.1. Online documentation

10

Figure 3. Raku Documentation: https://docs.raku.org

1.8.2. Local documentation

The documentation is available locally through the p6doc command. The «p6doc» package is
bundled with Rakudo Star, but can be installed manually with «zef» otherwise.

There are some issues with p6doc affecting the usability, so you may find the online documentation
easier to use.

Let us try to run it, without arguments:

11

https://docs.raku.org

$ p6doc
You want to maintain the index?
To build an index for 'p6doc -f'
 p6doc build

To list the index keys
 p6doc list

To display module name(s) containing key
 p6doc lookup

To show where the index file lives
 p6doc path-to-index

What documentation do you want to read?
Examples: p6doc Str
 p6doc Str.split
 p6doc faq
 p6doc path/to/file

Set the POD_TO_TEXT_ANSI if you want to use ANSI escape sequences to enhance text

You can list some top level documents:
 p6doc -l

You can also look up specific method/routine/sub definitions:
 p6doc -f hyper
 p6doc -f Array.push

You can bypass the pager and print straight to stdout:
 p6doc -n Str

Note that the local documentation is a snapshot from when it was installed, and the online
documentation may have changed quite a lot since then.

It is possible to run a local copy of the documentation web site, and the easiest way
is with Docker.

Run it like this, and go to http://localhost:31415 to use it:

docker run --rm -it -p 31415:3000 jjmerelo/perl6-doc

the «--rm» part tells Docker to remove the container automatically after it has been
stopped. You will still have the image, but running it again can take some time as it
will need to set it up again.

See https://github.com/Raku/doc for more information.

12

http://localhost:31415
https://github.com/Raku/doc

Exercise 1.3

Run the command p6doc list and notice the sheer size of entries (or keywords).

First a lot of lines starting with method, then routine and finally sub. The meaning of them:

method A method. Something invoked on an object.

routine Can be used both as a method or a sub(routine).

sub A subroutine, function or procedure.

We’ll get back to the documentation later on, when we have some knowledge to build on.

1.9. More Information
• The excellent «Weekly Rakudo News» blog gives weekly summaries of (almost) everything

related to Raku: https://rakudoweekly.blog/. It has been going on since 2003.

• Ask questions on Raku issues on the #raku IRC channel on irc.freenode.net. See https://raku.org/
community/irc for more information

• Books about Raku (and Perl 6): https://perl6book.com/ Note that there are older books in print
about Perl 6 not mentioned on this website. Avoid books published before 2016, as they are
horrible outdated.

1.10. Speed
Rakudo is generally slower than Perl 5, but much faster than just a year ago.

The developer focus has been: «Make it right, then make it fast».

Raku is fully Unicode compliant, making it slower than it could have been.

13

https://rakudoweekly.blog/
https://raku.org/community/irc
https://raku.org/community/irc
https://perl6book.com/

14

Chapter 2. Variables, Operators, Values and
Procedures.

2.1. Output with say and print
Before doing anyting else, we’ll discuss how to display text on the screen:

The normal way (in other languages) is the print command. We must add a newline (\n) at the end
if we want a newline:

> print "a"; print "b";
ab>

The > is the REPL prompt, on the same line.

In Raku we have say which will attach a newline at the end automatically:

> say "a"; say "b";
a
b

Use both, depending on what you want to achieve:

> print "a"; say "b";
ab

We’ll cover the details about Newlines in section 6.1, “Newlines”.

2.2. Variables
A variable is a named container (also called a bucket) that can hold a value, and the value can be
changed at any time.

2.2.1. Sigils

The variable type is decided by the first character, called sigil, that comes before the name. The four
types are:

Sigil Type Description

$ Anything anything

@ Array several values

% Hash several key-value pairs

15

& Code callable code

The sigil is part of the variable name, so «$a» can coexist with «@a», «%a» and «&a», and they are
separate variables.

Anything ($)

This can hold a single value, as we’ll do initially. But it can also be used to hold anything.

In Perl 5 this type is called Scalar, and you will probably also see that name used for Raku.

Arrays (@)

An array is a sorted list with one or more values.

See Chapter 8, Arrays and Lists for details.

Hashes (%)

A hash is an unsorted collection of pairs of keys and values. Use the key to look up a value.

See Chapter 9, Pair and Hashes for details, and the «Advanced Raku» course for even more details.

Code (&)

The & means that we get a reference to the code (usually a procedure name), instead of executing it
right away.

The first three sigils should be familiar if you have prior experience with Perl 5,
and is the limit of the built-in types for that language.

Raku has several other types, and we’ll present them later. If we assign content of
one of those types to a hash or array, we change the type. Assign it to a scalar to
retain the type, as a scalar can contain anything.

The first example we’ll encounter (see Chapter 8, Arrays and Lists) is the difference
between arrays and lists.

We can actually drop the other sigils, and use a the scalar $ for everything. But it
doesn’t exactly help with readability, so it isn’t recommended.

2.2.2. Twigils

The sigil may be followed by a twigil (something that «tweaks a sigil»). The most used are:

Twigil Description

! Attribute (class member)

* Dynamic

. Method (not really a variable)

16

: Self-declared formal named parameter

? Compile-time variable

^ Self-declared formal positional parameter, also called a Placeholder Variable.
See 8.12.1, “Placeholder Variables” for details.

See https://docs.raku.org/language/variables#Twigils for the complete list.

We will look into them in due course.

2.2.3. my

Variables must be declared (with my), before they can be used. Or we will get a compile time error:

The eject symbol () shows where the compiler thinks the problem is. The actual output depends
on the capabilities of your terminal.

> my $r
(Any)

(Any) means that the variable has no value. (Or rather, that it can hold any value.) We’ll explain that
in Chapter 3, The Type System.

my defines a lexically scoped variable, meaning that it is available in the current block only, from
where it is defined to the first closing bracket (}):

File: my

{
 my $a = 12;
 say $a; # -> 12
}

say $a; # -> Variable '$a' is not declared

We can declare several variables at the same time:

> my ($a, @b, %c);

The space between my and the opening paren is essential. If you forget it, it is taken
as a call to a procedure «my» (that hopefully doesn’t exist) with three arguments.

17

https://docs.raku.org/language/variables#Twigils

2.3. Comments
Start a comment with the # sign. The rest of the line is ignored by the compiler.

> say "12"; # This is a comment
12

2.3.1. Multi-line Comments

Multi-line and embedded comments start with a hash character (#), followed by a backtick (`), and
an opening bracketing character (e.g. (, { and [) or group of characters (e.g. ((or {[). It goes one
until a matching closing bracketing character(s).

say "Hello";
#`[This is a comment.
The compiler will ignore it.
But you, the reader, cannot ignore it
]
say "Good bye";

Recursive brackets (comments inside commenst) are possible, but probably not
very useful:

> say 14 #`{ a { b } c }, 12;
1412

The comment goes until the very end of the string.

2.3.2. Embedded Comments

We can use the Multi-line syntax for inline comment (on a single line) as well:

> say #`(Yeah, right. Why bother commenting the code?) "Whatever...";
Whatever...

> say 14; #`({ hidden-comment })
14

2.4. Non-destructive operators
Almost every operator and function will return the new modified value, leaving the original
intact/unchanged.

18

my $a = 10; my $b = 20;
my $a = $a + $b;
my $string = "abcabc" ~ "ABC";

We can assign the new value at the same time:

> $a += $b;
> $string ~= "ABC";

Why isn’t this the default? Well. The expression 2+2 is valid, but you cannot assign the sum (4) back
to the first value (2).

 This works for methods as well, see section 3.3, “Everything is an Object”.

2.5. Numerical Operators
An operator does something with one or more values or variables.

We have the usual mathematical ones, of course:

Numerical Integer Description

+ Addition

- Subtraction

++ Increment the variable by 1

-- Decrement the variable by 1

* Multiplication

/ div Division

2.5.1. + (Addition)

Use + (the addition operator) to add two numbers (and/or variables):

> 2 + 2; # -> 4

2.5.2. - (Subtraction)

Use - (the subtraction operator) to subtract one number (and/or variable) from another:

> my $a = 3; my $b = 2;
> $a - $b; # -> 1

19

2.5.3. ++ (Increment)

Use ++ to increment a variable by 1. The value is coerced to numeric if it isn’t numeric already.

It can be used as a prefix and postfix operator:

File: plusplus

my $i = 10; say "{ $i++ } $i"; # -> 10 11
 $i = 10; say "{ ++$i } $i"; # -> 11 11

Note that it is illegal to combine the prefix and postfix versions. So --$a++ (and variants) will fail.

2.5.4. -- (Decrement)

Use -- to decrement a variable by 1. The value is coerced to numeric if it isn’t numeric already.

It can be used as a prefix and postfix operator.

File: minusminus

my $i = 10; say "{ $i-- } $i"; # -> 10 9
 $i = 10; say "{ --$i } $i"; # -> 9 9

Note that it is illegal to combine the prefix and postfix versions. So ++$a-- (and variants) will fail.

2.5.5. * (Multiplication)

Use * (the multiplication operator) to multiply two numbers (and/or variables):

> 2 * 7; # -> 14

2.5.6. / (Division)

Use / (the division operator) to divide one number (and/or variable) with another:

> 8 / 4; # -> 2

2.5.7. div

The Integer division Operator div is a variant of / that can be used if both values are integers:

> 8 div 4; # -> 2

It fails if one or both values are anything else.

20

2.6. Operator Precedence
From hightest (also called tightest) precedence to lowest:

Operators Description

() Parens

** Exponentiation

* and / Multiplication and division

+ and - Addition and subtraction

When operators with the same precedence are encountered in the code, they are executed left to
right.

See https://docs.raku.org/language/operators for a complete list of operator precedence rules.

 If in doubt, use parens. (Yes, I mean it.)

Exercise 2.1

What is the result of this expression?

> say 12 + 10 * 4;

2.6.1. = (Assignment)

Use = (the assignment operator) to assign a value to a variable.

> my $s = 5; # -> 5
> $s = 10; # -> 10

This is actually an operator in Raku, though not in a matematical sense.

2.6.2. := (Binding)

Use the := operator to set the variable to point to the thing on the right side.

Normal assignment:

21

https://docs.raku.org/language/operators

my $a = 42; # (1)
my $b = $a; # (1)
$a += 10; # (2)
say "$a $b";

This will output 52 42, as expected.

(1)

$a = 52

$b =

(2)

Container

Scalar

Scalar

Container

42

$a = 42

$b =
Container

Scalar

Scalar

Container

42$a

Figure 4. Normal assignment

If the thing on the right is a variable, we have an alias to the same container:

my $a = 42; # (1)
my $b := $a; # (1)
$a += 10; # (2)
say "$a $b";

This will output 52 52.

$a =

(1)

42

$b
:=

$a = 52

$b
:=

(2)

Container Container

Scalar

Scalar

Scalar

Scalar

Figure 5. Binding to an existing variable

If the thing on the right is an expression (and not a variable), it is evaluated and the value is used:

my $a = 42; # (1)
my $b := $a + 0; # (1)
$a += 10; # (2)
say "$a $b";

This will output 42 52.

(1)

$a = 52

$b :=

(2)

Container

Scalar

Scalar

Constant

42

$a = 42

$b :=
Container

Scalar

Scalar

Constant

42$a+0

Figure 6. Binding to a value

22

The expression my $b := $a + 0; binds the variable to the value 42 (without a
container). Any such (containerless) value is constant, and impossible to change:

> $b++; # -> Error
> 12++ # -> Just as this is an error

The only way to change the value is to bind it to another one:

$b := 4;

Normal assignment will try to change the value, in this case 4, and that will not
work:

> $b = 14;
Cannot assign to an immutable value

Binding works with arrays and hashes as well.

2.7. Values
A value is either a string, a number, or something more complicated as an object as we’ll se in
Chapter 17, Classes.

2.7.1. Strings

String are specified in quotes; single, double or whatever else Unicode has to offer:

> my $name = "Arne"; # -> Arne
> my $hello = "Hello, $name"; # -> Hello, Arne
> my $hello = 'Hello, $name'; # -> Hello, $name

Variables are interpolated, unless single quotes are used.

23

The so-called «french quotes» (« and ») interpolate variables, but the string is
broken down as an array with the spaces as delimiter character.

> «Hello, $name».perl; # -> ("Hello", "Arne")

This applies to the ascii equvivalent << and >> as well.

> <<Hello, $name>>.perl; # -> ("Hello,", "Arne")

The single brackets version (with < and >) acts as single quotes, as variables are not
interpolated.

> <Hello, $name>.perl; # -> ("Hello,", "\$name")

The perl method shows how Raku stores the value(s) internally, and can be helpful
at showing what is going on. See section 6.2.3, “perl” for more information about it.

Note that arrays and hashes inside strings are not interpolated if used without an index. We can
add an empty index to make it work:

> my @a = 1,2,3; say "@a"; # -> @a
> my @a = 1,2,3; say "@a[]"; # -> 1 2 3

> my %a; say "%a{}"; # -> %a
> my %a; %a<a> = 12; say "%a{}"; # -> a 12

Or we can place the variable in curlies to ensure interpolation:

> my $hello = "Hello, { $name }";

This is useful with expressions:

> say "I am almost { $age + 1 } years old.";

See Chapter 7, Strings for more information, and section 7.12, “Quoting” for other quoting
constructs.

~ (String Concatenation)

Use ~ to glue two strings together:

24

> my $t = "abc" ~ "def";
abcdef

2.7.2. Numbers

If it is without quotes, and looks like a number, it is either a number:

12 # Integer
12.8 # A number
1.12e+20 # Floating point
2+4i # A Complex number

Or an error:

12A
1.12e
2+4j

 Complex Numbers will be covered in the «Advanced Raku» course.

2.8. Variable Names

The first character (after the sigil and optional
twigil) in a variable name (and any other name;
e.g. procedures, classes) must be a letter (as in
whatever Unicode has decided is a letter) or
underscore (_).

The rest can be letters, underscore (_), minus (-),
a single quote (') and digits.

A minus (-) or single quote (') must be followed
by a letter or underscore (_), and the last
character must be a letter, underscore or a digit.

Start Stop

Minus Single
quote

Digit

Letter
and

under-
score

Figure 7. Variable Name Syntax Rule

Some examples:

25

my $r1234; # OK
my $r1234-56; # ERROR - parsed as "$r1234 - 56"
my $r1234_56; # OK
my $r1234-5A; # ERROR - as "5A" is not a number
my $r1234'5A; # ERROR - as "5A" is not a number
my $Große; # OK
my $ßßßßßß; # OK
my $______; # OK
my $㑄㒔; # OK (doesn't work in print; two chinese letters)
my $_; # ERROR, as we cannot redeclare this one.

We can even use characters that are difficult to print.

Common sense is advisable, especially before venturing into the Unicode jungle.

Exercise 2.2

Which of the following variable names are legal?

my $don't-do-it;
my $dog;
my $dog2;
my $dog-3;

Use REPL to check if you are right.

2.9. constant
Do not use variables for values that should stay constant:

> constant $pi = 3.14;

You cannot change a constant value:

> constant $pi = 3.14;
> $pi = 3;
Cannot assign to an immutable value in block <unit> at <unknown file> line 1

26

For now, just think of «immutable» as a fancy word for «read only».

We’ll come back to it in the «Advanced Raku» course.

2.10. Sigilless variables
You can drop the sigil, if that makes you feel better:

> constant pi = 3.14;
> say pi * 5;

We can use binding, but it doesn’t add anything compared with assignment (except perhaps
clarity):

> constant pi := 3.14; # Use assignment instead

2.10.1. pi

Raku has a built in pi value:

> say pi; # -> 3.141592653589793

You can redefine it - without any warnings. But please don’t.

2.10.2. Still Constant?

If you think constant is too much typing, use a backslash instead when you declare it:

> my \z = 2; # -> 2
> say z + 100; # -> 102
> z = 2
Cannot modify an immutable Int (1) in block <unit> at <unknown file> line 1

The variable z is actually constant, so sigiless variables are not variables at all.

2.11. True and False
The boolean values True and False are built in:

> my $a = False; # -> False
> my $b = True; # -> True

In numerical context False has the value 0, and True has the value 1. This means that we can do the

27

following, though unwise:

> True + False; # -> 1
> True + True; # -> 2
> True * 12; # -> 12

2.11.1. so / ? / Bool

If we evaluate a non-Boolean value in Boolean context, we will get False if it is undefined, an empty
string or the number 0. Everything else will get True.

The so keyword (or ? prefix) forces the expression to be evaluated in Boolean context:

> "False".Bool; # -> True
> so "False"; # -> True
> ? "False" # -> True ## The space is optional
> "False".so # -> True

2.11.2. Bolean Operators

The Bolean operators come in pairs, one with high precedence and one with low.

High precedence Low precedence Description

! not Negation

&& and Both

|| or One or both

^^ xor Only one (Exclusive Or)

! / not

The ! and not operators can be used to negate a Bolean value:

> ! True; # -> False
> ! False; # -> True

When used on a non-Bolean value, the value is converted to Bolean before the negation:

> ! 10; # -> False
> ! 0; # -> True
> ! "ABC"; # -> False
> ! ""; # -> True

28

Instead of:

> if ! $value == 15

use the negated operator != (which we’ll explain in section 3.7, “Comparison
Operators”):

> if $value != 15

or negate the test:

> unless $value == 15

Be careful with the precedence:

> not 1 - 1; # -> not (1 - 1) -> not 0
True

> ! 1 - 1; # -> (!1) - 1 -> False - 1 -> 0 - 1
-1

&& / and

Returns a True-ish value if all the arguments evaluate to True, and a False-ish value otherwise.

> 1 and 6; # -> 6
> True and 0; # -> 0
> True and False; # -> False

The return value is the first argument that evaluates to False or the very last one (that evaluates to
True).

This operation short-circuits, so the compiler skips any expressions given after it
encounter the first False value:

> my $a = 1; $a++ and $a++ and $a++ and $a++; # -> 4
> my $b = 0; $b++ and $b++ and $b++ and $b++; # -> 0

|| / or

Returns True if at least one of the arguments evaluates to True:

29

> True || False; # -> True
> True || True; # -> True
> False || False; # -> False

xor / ^^

Returns True if exactly one of the arguments evaluates to True:

> True xor False; # -> True
> False xor False; # -> False

Nil is returned if more than one of them evaluates to True:

> True xor True; # -> Nil
> True xor True xor False; # -> Nil
> False xor False xor False xor True; # -> True
> False ^^ False ^^ False ^^ True; # -> True

Exercise 2.3

Explain why we get different results when we use ! and not:

> my $value = 1;
> ! $value == 15; # -> False
> not $value == 15; # -> True

2.12. //
The problem with the or and || operators is that they don’t differentiate between the value zero
and an undefined value:

> my $age = 0; # Age in years
> say $age || "unknown"; # -> unknown

We can fix this by using the «Defined-or» operator // instead. It returns the first defined operand,
or the last one if they are all undefined:

> my $age = 0; # Age in years
> say $age // "unknown"; # -> 0

30

> my $price-pound;
> my $price-dollar = 5;
> my $price-yen = 2;

> say "The price is: { $price-pound // $price-dollar // $price-yen // "unknown" }.";
The price is: 5.

(We should have told which currency we gave the price in, but never mind.)

2.12.1. () (Grouping Operator)

Use parens to group expressions together. They have higher precedence than anything else:

> 1 + 2 * 3 + 4; # -> 1 + (2 * 3) + 4; # -> 11
> (1 + 2) * (3 + 4) # -> 3 * 7; # -> 21

Note that the Grouping Operator does not make a list. We can use a comma (called the List
Operator; see section 8.1, “, (List Operator)”) to make a list.

31

32

Chapter 3. The Type System
Raku has a complex (as in complicated) type system, and we can choose to use it actively (called
«strong typing») - or ignore it.

The types are still there, even if we ignore them, and can cause surprises. Using the type system is
generally recommended.

Without using types:

> my $a = 12;
> $a = "hello, world!";

3.1. Strong Typing
With strong typing:

> my Int $a = 12; # -> 12

> $a = "hello, world!";
Type check failed in assignment to $a; expected Int but got Str ("Hello, world!")
 in block <unit> at <unknown file> line 1

Strong typing can prevent programming errors.

When a variable does not contain a value, REPL will report the type instead. Any is
the most general type, as it can represent anything.

We can do the same with arrays and hashes:

> my Int @a;
> my Str %h;

You can use the type system as and when you want:

> my Int $a = 12; # -> 12
> my $b = $a + 1; # -> 13
> $b = "Hi!"; # -> Hi!

3.1.1. of (as keyword)

We can use of as well to add a type constraint to a variable:

33

> my $i of Int = 42;
> my Int $i = 42; # The same

> my Int @a;
> my @a of Int;

> my Int %h;
> my %h of Int;

3.1.2. WHAT

The WHAT method (and procedure) can be used to tell us the type of a value or variable:

> 12.WHAT; # -> (Int)
> WHAT 12; # -> (Int)
> "12".WHAT; # -> (Str)
> my $i = 12; say $i.WHAT; # -> (Int)
> $i = "AB"; say $i.WHAT; # -> (Str)
> True.WHAT; # -> (Bool)

3.1.3. ^name

WHAT and ^name give similar results, but are implemented quite differently.

> my Numeric $a = 1;
1

> $a.WHAT; # A one-element list
(Int)

> $a.^name # A scalar value
Int

The WHAT (and ^name) methods show implementation details, and you should not
write code depending on them.

One obvious reason is classes and inheritance (which will be discussed in Chapter
17, Classes), that can change the class name.

Another (not so obvious) reason is optimizers, which may choose to change the
types.

3.1.4. of (as method)

We can use of as a method to show the type of the value or variable for arrays and hashes:

34

> my Int %$hash; say %hash.of; # -> (Int)
> my Str %$hash; say %hash.of; # -> (Str)
> my @a; say @a.of; # -> (Mu)
> my Int @a; say @a.of; # -> (Int)

The of method doesn’t work with scalars, where we’ll have to use .VAR to get the
scalar object:

> my Numeric $a; # -> (Numeric)
> $a = 3; # -> 3
> $a.WHAT; # -> (Int)
> $a.VAR; # -> 3
> $a.VAR.of; # -> (Numeric)

3.2. ^mro (Method Resolution Order)
The ^mro («method resolution order») method gives a list of types (or classes) an object or value
belongs to, in inherited (and priority) order:

> say 12.^mro; # -> ((Int) (Cool) (Any) (Mu))

This tells us that the number 12 is of type Int, that Int inherits from Cool, that Cool inherits from
Any, and finally that Any inherits from Mu.

What this means it that if we apply say on an Int, the dispatcher (or method resolver) starts with
Int and checks if there is a say method there. If not, it continues along the inheritance graph until it
finds it, or gives up.

This is useful from an implementation perspective. We inherit methods from base (or parent)
classes, and supply custom versions only when needed.

The initial caret in ^mro is there to tell you that this method gives implementation
specific details. The information from such calls may change in later versions of
Raku, without prior warnings.

See https://docs.raku.org/type.html for more information about the types system.

3.2.1. Int Inheritance Tree

^mro can be used on type objects as well. Her we have Int:

> say Int.^mro; # -> ((Int) (Cool) (Any) (Mu))

35

https://docs.raku.org/type.html

Type Description

Mu The root of the type system

Any Thing/object

Cool Object that can be treated as both a string and number (short for «Convenient
OO Loop»)

Int Integer

Figure 8. Inheritance Tree for Int

The colours used are: Black (types), Green (enums; we’ll come back to it in the «Advanced Raku»
course), Blue (roles, see 17.15, “Roles”). A type inherits from something that it has a pointer to.

The Graph Online: https://docs.raku.org/type/Int#Type_Graph

See section 6.5.2, “Str Inheritance Tree” for the Str Inheritance Tree.

3.2.2. Other Types

Note that we cannot use ^mro on roles:

> Real.^mro
No such method 'mro' for invocant of type 'Perl6::Metamodel::ParametricRoleGroupHOW'
 in block <unit> at <unknown file> line 1

> Numeric.^mro
No such method 'mro' for ...

3.3. Everything is an Object
If you want it to be.

Most built-in functions have a corresponding method:

36

https://docs.raku.org/type/Int#Type_Graph

> say $a;
> $a.say;

> say "Hello";
> "Hello".say;

Remember the follwoing table from chapter 1:

method A method. Something invoked on an object.

routine Can be used both as a method or a sub(routine).

sub A subroutine, function or procedure.

If you want to know if a certain keyword can be used as a method, subroutine or both, look it up
with p6doc list. For instance say:

$ p6doc list | grep say
method say
sub say

This shows that the documentation isn’t 100% consistent. We should have gotten one hit, on
«routine say« here.

Most methods (as well as operators, see section 2.4, “Non-destructive operators”)
leaves the value it is invoked on intact, and returns a modified version.

We can do the assignment back with this short form:

$val = $val.something; # This method doesn't exist.
$val .= something;

3.4. Special Values
In this section we will look at the special values Nil, Any, Inf and NaN.

3.4.1. Nil & Any

Nil is the null value (the absence of a value).

Assign it to a variable to reset it to its default (undefined) value:

> my $b = "b"; $b = Nil; # -> (Any)
> my Int $i = 4; $i = Nil; # -> (Int)

It is possible to use the type instead of Nil:

37

> my Int $i = 4; $i = Int; # -> (Int)

Any doesn’t work if you use types (strong typing):

> my $a = Any; # -> (Any)

> my Int $i = Any;
Type check failed in assignment to $i; expected Int but got Any (Any)

> my Int $i = Nil; # -> (Int)
> my Int $i = Int; # -> (Int)

Be careful when trying to output an undefined value:

> my $a = Any; say $a; # -> (Any)

> my $a = Any; say ": $a";
Use of uninitialized value of type Any in string context.

See section 6.3.1, “say” for details.

3.4.2. Infinity

Inf is infinity. We can use the unicode infinity symbol ∞ as well.

Infinity is a value larger than any we can express, and will always be out of reach:

> say 1000 > Inf
False

We can negate it:

> say -1000 < -Inf
False

38

Do not treat Inf as a number. It is useful for comparisons, but doing arithmetic on
it is mostly useless:

> Inf + 1; # -> Inf
> -Inf - 1; # -> -Inf
> -Inf + Inf; # -> NaN
> Inf * 0; # -> NaN

The first one proves that 1 == 0. Except it doesn’t, as Inf isn’t a number and cannot
be used in expressions.

3.4.3. NaN (Not a Number)

See section 5.10, “NaN (Not a Number)”.

Exercise 3.1

What is the largest number we can store in an Int?

Use REPL.

3.5. :D (Defined Adverb)
A typed variable accepts values of the specified type, obviously. But it will also accept the default
value of Nil. That is normally not a good idea for procedure arguments (see Chapter 10, Procedures
for details), which we haven’t discussed yet.

We can remedy this with a :D (for «Defined») adverb on the type:

> my Int:D $a;
===SORRY!=== Error while compiling:
Variable definition of type Int:D requires an initializer at line 2

> my Int:D $i = Nil
Type check failed in assignment to $i; expected type Int:D cannot be itself...

> my Int:D $i = Int
Type check failed in assignment to $i; expected Int:D but got Int (Int) ...

> my Int:D $i = Any
Type check failed in assignment to $i; expected Int:D but got Any (Any) ...

Without the :D adverb, the code above would work.

39

3.5.1. :U (Undefined Adverb)

It is also possible to prohibit values in a variable with the :U (for «Undefined») adverb on the type:

my Int:U $i;

> $a = Nil
(Int:U)

> $a = Int
(Int)

$a = 1
Type check failed in assignment to $a; expected Int:U but got Int (1)
 in block <unit> at <unknown file> line 1

This is rather pointless, but at a strecth can be used on arguments to a procedure, where we use the
type instead of an actual value. But I really don’t recommend it.

3.5.2. defined

Use defined to check if a value is defined (has a value):

> say Int.defined; # -> False
> say 12.defined; # -> True

> my $a; say $a.defined; # -> False
> my $a = 1; say $a.defined; # -> True

Note that there also is a DEFINITE method that gives almost the same result. We’ll come back to it in
the «Advanced Raku» course.

3.6. Type Coersion
Raku has automatic and manual type coersion (also called conversion).

3.6.1. Automatic Type Coersion

Raku will automatically convert the values to the required type, if possible. But only if we haven’t
used strong typing:

40

> my $string1 = "12"; my $string2 = "13";
> my $sum1 = $string1 + $string2; # Addition
25

> $sum1.WHAT;
(Int)

> my $sum2 = $string1 ~ $string2; # String concatenation
1213

> $sum2.WHAT;
(Str)

> my Int $a = 12; my Int $b = 13;
> my $c = $a ~ $b;
1213

> my Int $d = $a ~ $b;
Type check failed in assignment to $d; expected Int but got Str ("1213")
 in block <unit> at <unknown file> line 1

3.6.2. Manual Type Coersion

Manual type coersion is useful in combination with strong typing, when we want (and have) full
control of the types:

To Method Prefix Keyword Function

Numeric .Numeric + Numeric()

String .Str ~ Str()

Boolean .so or .Bool ? so Bool()

There is also a ?^ prefix operator, that coerces to Boolean and negates the result, and the ?^ (the
same), ?| and ?& infix operators that perform logical XOR, OR and AND operations.

The values must be convertable for this to work.

Numeric / +

Numeric or the + prefix will convert to the best numeric type for the given value:

41

> "12".Numeric.WHAT # -> (Int) # Integer
> "12.1".Numeric.WHAT # -> (Rat) # Rational number
> "5e+10".Numeric.WHAT # -> (Num) # Floating point

> +("12").WHAT # -> (Int)
> +("12.1").WHAT # -> (Rat)

> "abc".Numeric
Cannot convert string to number: ...

We can specify the actual type, if we are certain of what we want:

> "12".Int.WHAT # -> (Int) # Integer
> "12".Rat.WHAT # -> (Rat) # Rational number
> "12".Num.WHAT # -> (Num) # Floating point
> 12.1.Str.WHAT # -> (Str) # String; "12.1"
> ~(12.1).WHAT # -> (Str) # String; "12.1" # Prexif ~

But you will get exactly what you ask for:

> "12.1".Int; # -> 12

Str / ~

To string:

> 12.Str;
> ~12;

See section 2.11, “True and False” for the boolean examples.

 There are other ways of stringifying values. See 6.3, “Output” for details.

3.6.3. Preventing Runtime errors with try

Run time errors occur when Raku fails to do certain operations. E.g.:

> "AS".Int
Cannot convert string to number: ...

We can prevent the program termination by prefixing the expression with try:

42

> try "AS".Int
Nil

Now it is the program’s responsibility to handle the error situation. Some possibilities:

> my $text = "AS";
> try $possibly-an-int.Int;
Nil

> try $possibly-an-int.Int // 0;
0

But beware of zero:

> my $zero = 0;
> try $zero.Int;
0

When try is applied to a non-Failure, it leaves the value intact. So the zero is returned, and we will
get into problems if we use this in a test. E.g. like this where the if block is not executed, even if we
have an integer.

my $zero = 0;
if try $zero.Int
{
 ...
}

We can prevent this problem with the .defined method:

> my $zero = 0;
> say "OK" if try $zero.Int.defined; # -> OK

try and $! will be covered in detail in the «Advanced Raku» course.

3.7. Comparison Operators
We have the usual numeric comparison operators, and their string versions. As well as quite a few
others as well:

Numeric Strings Smart Other What

== eq Equal

< lt before Less than

43

Numeric Strings Smart Other What

<= le Less than or equal

> gt after Greater than

>= ge Greater than or equal

!= ne Not equal

<=> leg cmp Three way comparison

=:= Container equality; see section 3.7.6, “=:=”

=== Value identity; see section 3.7.7, “===”

=~= Approximately equal; see section 5.11, “=~=”

Note that string comparison is case sensitive. It doesn’t recognize letters as such, but compares the
Unicode value. So uppercase letters come before the lowercase versions.

Most of them are straight forward, but we’ll discuss the last row (the «Three way comparison»
operators) and the «Smart» column in the following sections.

3.7.1. cmp

cmp (as in «Compare») is the versatile three-way comparison operator.

It compares strings with string semantics, numbers with number semantics, Pair objects first by
key and then by value etc.

> say (a => 3) cmp (a => 4); # -> Less
> say 4 cmp 4.0; # -> Same
> say 'b' cmp 'a'; # -> More

In numeric context, the return values are -1 (Less), 0 (Same) and 1 (More).

unicmp

There is a unicmp version of cmp that disregards the case of the characters:

> "a" unicmp "B"; # -> Less
> "A" unicmp "b"; # -> Less

It doesn’t quite work as expected when we compare lower and upper case versions of the same
letter. The lower case version is considered Less than the upper case version:

> "A" unicmp "a"; # -> More
> "A" unicmp "A"; # -> Same
> "a" unicmp "A"; # -> Less

But this means that we can actually use it for sorting, and get predictable results.

44

There is a collation aware version of unicmp called coll. It will be covered in the
«Advanced Raku» course.

3.7.2. leg

leg (as in «Less, Equal or Greater») is the string only version of cmp (see section 3.7.1, “cmp”).

Non-string values are converted to strings before the comparison.

> say 'a' leg 'b'; # -> Less
> say 'a' leg 'a'; # -> Same
> say 'b' leg 'a'; # -> More

In numeric context, the return values are -1 (Less), 0 (Same) and 1 (More).

Comparing cmp and leg:

> 11 leg 2; # -> Less
> 11 cmp 2; # -> More

3.7.3. <=>

<=> is the numeric version of cmp (see section 3.7.1, “cmp”).

> say 1 <=> 2; # -> Less
> say 2 <=> 2.0; # -> Same
> say 2 <=> 1; # -> More

Non-numeric values are converted to numbers before the comparison, and you’ll get an error if it
wasn’t possible to do the convertion:

> 2 <=> "sj"
Cannot convert string to number: ...

3.7.4. before

The before operator behaves as cmp (see section 3.7.1, “cmp”), except that it returns True if the first
argument comes before (is less than) the second.

> 1 before 1; # -> False
> 1 before 2; # -> True
> 111 before 21; # -> False
> "111" before "21"; # -> True

45

3.7.5. after

The after operator behaves as cmp (see section 3.7.1, “cmp”), except that it returns True if the first
argument comes after (is greater than) the second.

> "ab" after "aaaa"; # -> True

Exercise 3.2

Explain why we get False from the first, and True from the second:

> 111 before 21; # -> False
> "111" before "21"; # -> True

3.7.6. =:=

Use the Container Identity Operator =:= to find out if both arguments are bound to the same
container. If it returns True, it generally means that modifying one will also modify the other.

> my $a = 42;
> my $b = $a;
> $a =:= $b; # -> False

Here we apply =:= to the two first code blocks from section 2.6.2, “:= (Binding)” to show that it
recognices binding:

> my $a = 42;
> my $b := $a;
> $a =:= $b; # -> True

3.7.7. ===

Use the Value Identity Operator === to check if both arguments are the same object or value,
disregarding any containerization:

> my $a = 3; # -> 3
> my $b := 3; # -> 3
> $a === $b; # -> True
> 1 === 1.0; # -> False

When used on values (as done here), === behaves the same as eqv.

46

See section 17.10.2, “===” for a description on using === on objects.

We can use a type object to check the type of the variable or value:

> my $a = 12; $a.WHAT === Int; # -> True

3.7.8. isa

The isa method looks better (avoiding WHAT):

> my $a = 12; $a.isa(Int); # -> True

We can also use smartmatch to check the type. See section 9.16.2, “With
Smartmatch”.

3.8. but (True and False, but …)
We can use the but keyword to change how non-boolean values are converted to boolean:

> my $a = "Hi" but False; # -> Hi
> say $a; # -> Hi
> say so $a; # -> False

You can read it like «yes, but…»

The but clause is part of the current value (and not the variable), and will be lost if
we change the value:

> my $c = 156 but False; # -> 156
> say so $c; # -> False
> $c++; # -> 157
> say so $c; # -> True

It is possible (but unwise) to use it with non-Boolean values after the but keyword. This should be
all possibible combination (of the basic types string/number/Boolean):

my $x = $x.Str $x.Int $x.Bool +$x $x + 0

10 but 0 10 0 True 10 10

10 but 'ten' ten ten True ten 10

10 but False 10 10 False 10 10

10 but True 10 10 True 10 10

0 but 10 0 10 False 0 0

0 but 'ten' ten ten False ten 0

47

my $x = $x.Str $x.Int $x.Bool +$x $x + 0

0 but False 0 0 False 0 0

0 but True 0 0 True 0 0

'ten' but 0 ten 0 True Error Error

'ten' but 10 ten 10 True Error Error

'ten' but False ten Error False Error Error

'ten' but True ten Error True Error Error

True but 0 True 0 True 1 1

True but 10 True 10 True 1 1

True but 'ten' ten 1 True 1 1

True but False False 0 False 0 1

False but 0 False 0 False 0 0

False but 10 False 10 False 0 0

False but 'ten' ten 0 False 0 0

False but True True 1 True 1 0

Error means a runtime error (and program termination).

Some of the values in the table doesn’t make much sense. But the problem is the
input. As long as we use it as intended with a boolean value after the but it works
out as expected.

The program used to make this table, using try to prevent program termination on error:

File: but

say "\$x = |\$x.Str |\$x.Int |\$x.Bool|+\$x |\$x+0";
say "----------------+-------+-------+-------+-------+----";

print-it("10 but 0", 10 but 0);
print-it("10 but 'ten'", 10 but 'ten');
print-it("10 but False", 10 but False);
print-it("10 but True", 10 but True);

print-it("0 but 10", 0 but 10);
print-it("0 but 'ten'", 0 but 'ten');
print-it("0 but False", 0 but False);
print-it("0 but True", 0 but True);

print-it("'ten' but 0", 'ten' but 0);
print-it("'ten' but 10", 'ten' but 10);
print-it("'ten' but False", 'ten' but False);
print-it("'ten' but True", 'ten' but True);

print-it("True but 0", True but 0);
print-it("True but 10", True but 10);
print-it("True but 'ten'", True but 'ten');

48

print-it("True but False", True but False);

print-it("False but 0", False but 0);
print-it("False but 10", False but 10);
print-it("False but 'ten'", False but 'ten');
print-it("False but True", False but True);

sub print-it ($label, $expression)
{
 print $label, "\t|";
 print trap-it($expression.Str), "\t|";
 print trap-it($expression.Int), "\t|";
 print trap-it($expression.Bool), "\t|";
 print trap-it(+$expression), "\t|";
 print trap-zero($expression);
 say "";
}

sub trap-it ($expression)
{
 my $result;
 try { $result = $expression.gist; }

 return $!
 ?? "ERR"
 !! $result;
}

sub trap-zero ($expression)
{
 my $result;
 try { $result = ($expression + 0).gist; }

 return $!
 ?? "ERR"
 !! $result;
}

The Error Variable $! contains the error object (if the code we wrapped in try
failed). In Boolean context it tells us if we have an error. In string context it gives
the error message.

3.8.1. does

The does keyword is similar to but. The differene is that does adds it to the given variable, whereas
but applies it to a copy of it.

So normal assignment works the same:

49

> my $a = "Hi" but False; say $a.WHAT; # -> (Str+{<anon|6>})
> my $b = "Hi" does False; say $b.WHAT; # -> (Str+{<anon|7>})

> my $a = "Hi"; $a but False; say $a.WHAT; # -> (Str)
> my $b = "Hi"; $b does False; say $b.WHAT; # -> (Str+{<anon|9>})

We apply the but to a copy of $a, and this value is discarded as we don’t assign it to a variable.

50

Chapter 4. Control Flow
In this chapter we’ll discuss statements used to change the flow of execution from the normal top-
down.

4.1. Blocks
A block is a collection of code that is treated as a whole. Blocks are set up inside a pair of curly
braces:

{
 # This is a block
}

4.2. Ranges (A Short Introduction)
A range in Perl 6 is a collection of consecutive incremented integers. A range 1 .. 10 contains all
the integers from 1 to 10.

The .. operator give a range (and not a list):

> (1 .. 5).WHAT
(Range)

> say (1 .. 5)
1..5

Ranges are lazy, so the individual values will not be calculated until actually needed.

From 10 (but not including it, so from 11) to 1 million:

> (10 ^.. 1_000_000)

We can exclude the end value as well:

> (10 ..^ 1_000_000)

Both start and end values excluded:

> (10 ^..^ 1_000_000)

(Read the ^ character as «up to/from, but not including».)

51

The ^ is a part of the range operator, and not the values!

That is why there cannot be any spaces between an ^ and the range operator.

We can use this short form if we want e.g. 10 values:

> my @values = ^10;
[0 1 2 3 4 5 6 7 8 9]

It starts with zero and counts up.

4.3. loop
The loop statement is the classic «for» loop known from other languages. It takes three statements
separated by semicolons:

> loop (my $i = 0; # The initial value
> $i < 10; # The test to decide if the loop should be stopped
> $i++) # The incrementer
> { print $i; }
> print "\n";
0123456789

Note that my can be used to introduce a new variable as the loop counter, as done here, or we can
use a variable defined outside the loop. But the side effect is that we change its value.

It is possible to skip the last part (the incrementer):

> loop (my $i = 0; $i++ < 10;) { say $i; }
1
2
3
...

But this may cause subtle changes (different start value), as shown above.

The statements must be specified in parens.

We can iterate over an array like this:

52

File: loop-array

my @a = <A B C D E F G H I J K L>;

loop (my $i = 0; $i < @a.elems; $i++)
{
 print "|", @a[$i];
}

print "\n";

Running it:

$ raku loop-array
|A|B|C|D|E|F|G|H|I|J|K|L

The first line is an array consisting of single characters; as described in section
2.7.1, “Strings”.

We could have written it like this:

my @a = "A" .. "L";

A lot of code to iterate over an array, and it is easy to get the indices wrong (usually by 1). But we
have a much more efficient way of doing this, as we’ll show in the next section.

4.4. for
A for loop is the most used loop type, and it can be used on almost anything.

The «loop-array» program from the previous section can be written much more compact like this:

File: for-array

my @a = <A B C D E F G H I J K L>;

for @a -> $elem
{
 print "|", $elem;
}

print "\n";

The -> syntax introduces a local variable (an implict my variable) in the following block, containing
each value in the array one after each other.

53

Running it gives the same result:

$ raku for-array
|A|B|C|D|E|F|G|H|I|J|K|L

Note the difference; here we iterate over the actual values, and not the indices.

Also note that we get a read only version of the value, so trying to change it will fail:

File: for-array-error (partial)

 print "|", $elem; $elem ~= ".";

Cannot assign to a readonly variable or a value
 in block <unit> at ./for-array-error line 7

Exercise 4.1

What is the output from this program?

File: for-array2

my @a = <A B C D E F G H I J K L>;

my $elem = 99;

for @a -> $elem
{
 ; # Do nothing
}

say $elem;

4.4.1. for as a counter

We can execute a loop a specific number of times as well. The range short form described in section
4.2, “Ranges (A Short Introduction)” is perfect for iterations:

File: for-school

for ^5
{
 say "I like school.";
}

54

The output:

I like school.
I like school.
I like school.
I like school.
I like school.

The indices are 0 to 4 (and not 1 to 5), but as we do not use them in the expression
that doesn’t really matter.

Exercise 4.2

What is the output from this program:

for 5
{
 say "I like school.";
}

4.4.2. $_ (Topic Variable)

The «topic variable» $_ is the default parameter for blocks that don’t have an explicit signature:

for <a b c> { say $_ } # sets $_ to 'a', 'b' and 'c' in turn
say $_ for <a b c>; # same, even though it's not a block

It is usually better to use an explicit variable (with the -> syntax described in section 4.4, “for”), as
long as the variable has a good name.

Calling a method on $_ can be shortened by leaving off the variable name:

.say; # same as $_.say

55

We cannot use an explicit block variable, e.g. -> $val, outside the block:

> $val.say for (1 .. 10) -> $val
===SORRY!=== Error while compiling: Variable '$val' is not declared.
Did you mean '&val'?
------> <BOL>⏏$val.say for ("aa" .. "bb") -> $val

The problem is that -> $val is available in the following block only. But we use it
long before the block, and the block is missing.

This works:

for (1 .. 10) -> $val
{
 $val.say;
}

4.4.3. Postfix for

A postfix version of for is available, if we only have one expression:

say "Country: $_" for @countries;

Note that «one expression» can also mean a block:

> { .say; .say } for 1 .. 10;

Or we can group expressions with parens:

> (.say; .say) for 1 .. 10;

But I don’t advise using it like that.

The last statement in a block doesn’t need a trailing semicolon, but it doesn’t hurt
to add one.

We can iterate over a range:

for 1 .. 10 -> $i
{
 say $i;
}

56

If you already have an $i variable, it will be hidden inside the for body, but will be
available again afterwards, with the original value.

The range short form ^10 is handy for a 10 iterations loop. It is the same as 0 ..^ 10 and 0 .. 9:

do-something($_) for 1 .. 10; # 1 .. 10 # 10 iterations
do-something($_) for ^10; # 0 .. 9 # 10 iterations

As long as you do not depend on the values beeing 1 to 10.

4.5. Infinite Loops
These are all the same:

.say for 1 .. Inf

.say for 1 .. ∞

.say for 1 .. *

.say for ^Inf

Note that we have to use ^Inf to get a Range. A single Inf is just a single value, and the loop would
only run once.

Also note that the last one starts with zero.

Or we could use loop without arguments (and we can skip the parens), if we do not need a counter:

loop { say 'forever' }

An infinite loop should have an exit strategy. We will discuss last in section 4.17.3, “last”.

4.6. while
The while statement executes the block as long as the given condition is true.

File: while

my $x = 1;

while $x < 4
{
 print $x++;
}

print "\n";

57

$ raku while
123

while can also be used as a statement modifier:

File: while2

my $x = 1;

print $x++ while $x < 4;

print "\n";

$ raku while2
123

The output is the same because the condition is tested before the print statement is executed.

4.7. until
The until statement is a while statement with negated test. It will execute the block as long as the
expression is false:

File: until

my $x = 1;

until $x > 3
{
 print $x++;
}

print "\n";

$ raku until
123

until can also be used as a statement modifier:

my $i = 0;
say "Hello" until $i++ > 10;

58

4.8. repeat while
The repeat { … } while statement has the test at the end. The result is that the block is executed at
least once. And as long as the condition holds, another repetition occurs.

File: repeat-while

my $x = 5;

repeat
{
 print $x++;
}
while $x < 1;

print "\n";

$ raku repeat-while
5

It is possible to place the repeat and while statements together at the beginning:

File: repeat-while2

my $x = 5;

repeat while $x < 1
{
 print $x++;
}

print "\n";

The condition is still evaluated at the end of the loop, even if placed up front.

4.9. repeat until
The repeat { … } until statement is a repeat { … } while statement with negated test. It will
execute the block at least once, and then for as long as the expression is False:

59

File: repeat-until

my $x = 5;

repeat
{
 print $x++;
}
until $x > 1;

print "\n";

$ raku repeat-until
5

It is possible to place the repeat and until statements together at the beginning:

File: repeat-until2

my $x = 5;

repeat until $x > 1
{
 print $x++;
}

print "\n";

The condition is still evaluated at the end of the loop, even if placed up front.

4.10. Loop Summary

Construct See Section Always Executed Once

loop 4.3, “loop” No

for … 4.4, “for” No

… for 4.4.3, “Postfix for” No

while … 4.6, “while” No

… while 4.6, “while” No

until … 4.7, “until” No

… until 4.7, “until” No

repeat … while 4.8, “repeat while” Yes

repeat while … 4.8, “repeat while” Yes

60

Construct See Section Always Executed Once

repeat … until 4.9, “repeat until” Yes

repeat until … 4.9, “repeat until” Yes

4.11. if
We can conditionally execute a block once with the if statement:

if $hour == 17
{
 say "Time to go home";
}

4.11.1. elsif

We can have several conditions:

if $hour == 17
{
 say "Time to go home";
}
elsif $hour == 8
{
 say "Time to go to work";
}

4.11.2. else

We can add an else block, and it is executed if none of the if and elsif(s) matched:

if $time == 17
{
 say "Time to go home";
}
elsif $time == 8
{
 say "Time to go to work";
}
else
{
 say "Stay put!";
}

61

4.11.3. unless

Use unless to negate the if-test;

say "Not OK" if not $a;
say "Not OK" unless $a; # The same

Note that unless doesn’t support else and elsif, as the resulting code would be
hard to understand. (No, that isn’t false at all.)

4.12. given
We can use given to set $_ for a block:

> $_ = 12;
> .say; # -> 12
> .say given 13; # -> 13
> .say; # -> 12

> given 'a' { say $_ }; # sets $_ to 'a'
> say $_ given 'a'; # same, even though it's not a block

The old value (if any) is restored after the block or (in this case) prexif statement has been executed.

given can also be used to form a switch-like statement (in combination with when); it will be covered
in the «Advanced Raku» course.

4.13. with
The with statement is like if but tests for definedness rather than truth. In addition, it topicalizes on
the condition (sets $_ to the value):

> say "OK" if 0; # -> ()
> say "OK" with 0; # -> OK
> with 12 { .WHAT.say } # -> (Int)

Trying to output an undefined value (Any, Nil and Int) fails in a string:

> my $a = Any;
> say "Not OK: $a;
Use of uninitialized value of type Any in string context.
Methods .^name, .perl, .gist, or .say can be used to stringify it to something
meaningful.

62

So we can use with to detect them:

File: with

for (0, "2", Any, Nil, Int, pi, "hello") -> $input
{
 with $input { say "OK: $_"; }
 else
 {
 say "Not OK: undefined value";
 }
}

$ raku with
OK: 0
OK: 2
Not OK: undefined value
Not OK: undefined value
Not OK: undefined value
OK: 3.141592653589793
OK: hello

It error message mentioned say as a method. Let us try:

my $a; $a.say; # -> (Any)

See section 6.3, “Output” for a discussion of why say works on an undefined value,
but not when it is interpolated in a string.

So we rewrite the code accordingly:

File: with

for (0, "2", Any, Nil, Int, pi, "hello") -> $input
{
 with $input { say "OK: $_"; }
 else { print "Not OK: "; .say; }
}

I have changed the say in the else to print to avoid an extra newline.

63

$ raku with2
OK: 0
OK: 2
Not OK: (Any)
Not OK: Nil
Not OK: (Int)
OK: 3.141592653589793
OK: hello

4.13.1. given vs with

given (see section 4.12, “given”) and with are somewhat similar when used as statement modifiers:

Expression given with

.say XXX 12 12 12

.say XXX 0 0 0

.say XXX Nil Nil ()

.say XXX Any Any ()

.say XXX NaN NaN ()

They differ only when we give an undefined value: given returns the undefined value, but with
returns an empty list.

 Do not use with as a statement modifier.

4.13.2. orwith

with has orwith as if has elsif:

File: orwith

for (0, "2", 3/11, pi, "hello") -> $input
{
 with $input.Numeric { say "Number: $input"; }
 orwith $input.Str { say "Str: $input"; }
 else { say "??: <unknown type>"; }
}

$ raku orwith
Number: 0
Number: 2
Number: 0.272727
Number: 3.141592653589793
Str: hello

We write a number, if possible to convert the value to number. If not, we try to convert it to a

64

string. That works for all defined values, so the else part is never used.

(If we had passed in e.g. Any, that would have been a suitable value for the else part, the with
condition would cause a run time error.)

We can intermix if-based and with-based clauses.

This says "Yes"
if 0 { say "No" } orwith Nil { say "No" } orwith 0 { say "Yes" };

4.13.3. without

without is related to with in the same way that unless is related to if: negated test.

File: without

for (1, "2", Any, Nil, Int, pi, "hello") -> $input
{
 without $input { print "Not OK: "; .say: }
}

$ raku without
Not OK: (Any)
Not OK: Nil
Not OK: (Int)

 There is no else clause, for the same reason that unless doesn’t have it.

We can also use with and without as statement modifiers:

> my $variable = 12; say "$_ is of type { .^name } with $variable;
12 is of type Int

> my $answer; say "undefined answer" without $answer;
undefined answer

4.14. ?? !!
This is a compact if-then-else:

my $x = $y == True ?? 5 !! 4;

If the expression to the left of ?? evaluates to True the first argument (after the ??) is used, otherwise
the second argument (after the !!) is used.

65

Or, in the usual verbose way:

my $x; if $y == True { $x = 5; } else { $x = 4; }

4.15. do
do is a block construct, returning the last statement inside the block.

We can shorten the previous code line with do like this:

my $x = do { if $y == True { 5; } else { 4; } }

And even more compact:

my $x = do { $y == True ?? 5 !! 4; }

4.16. when
A when block looks similar to an if block, but the behaviour is subtly different.

We start with a regular if block:

File: if-when (partial)

for True, False
{
 if $_ { say "if $_"; } ① ③
 say "if $_ 2"; ② ④
}

① True → Executed

② True → Always executed

③ False → Not executed

④ False → Always executed

$ raku if-when
if True
if True 2
if False 2

A when block behaves differently, as the code immediately after it in the same block level is regarded
as en implicit else block:

66

File: if-when (partial)

for True, False
{
 when $_ { say "when $_"; } ① ③
 say "when $_ 2"; ② ④
}

① True → Executed

② True → Not executed bacause «1» was

③ False → Not executed

④ False → Executed because «3» was not

I had to use so to avoid a warning.

$ raku if-when
when True
when False 2

4.17. Loop Manipulation
We can break out early, skip an iteration, or do it again.

4.17.1. once

A block prefixed with once will be executed one time only, even if it is placed inside a loop or a
recursive routine:

File: for-once

for ^5
{
 once { say "once"; }
 say "many ($_)";
}

$ raku for-once
once
many (0)
many (1)
many (2)
many (3)
many (4)

67

We can achieve the same thing with the FIRST phaser (We’ll come back to it in the
«Advanced Raku» course.)

4.17.2. next

The next command starts the next iteration of the loop:

File: for-next

for ^5
{
 next if $_ == 2;

 say "many ($_)";
}

$ raku for-next
many (0)
many (1)
many (3)
many (4)

4.17.3. last

The last command immediately exits the loop:

File: for-last

for ^Inf
{
 last if $_ == 5;

 say "many ($_)";
}

$ raku for-last
many (0)
many (1)
many (2)
many (3)
many (4)

Be careful with the expression given to last. If the value never reaches 5 we have an infinite loop.
(As in last if $_ == 4.5).

68

It is also possible to use die or exit (which will be described in the «Advanced
Raku» course) to exit a loop, but they will terminate the program as well.

Exercise 4.3

Write a program that calculates the sum of all the integers from 1 and upwards until the sum
reaches a specified upper limit (e.g. 1000), and displays the last integer added to reach (or pass) the
limit.

Tip: Use an infinite loop, and use last to exit it.

For 1000 the output can be: «Limit 1000 reached (1035) at value 45.»

4.17.4. redo

The redo command restarts the loop block without evaluating the conditional again.

File: loop-redo

my $sum;

for 1 .. 1000 -> $i
{
 $sum += $i;

 redo if $sum.is-prime;
}

say "Sum: $sum";

$ raku loop-redo
Sum: 546089

What happens here is that we add the numbers from 1 to 1000, and the number a second time (or
more) if the sum is a prime number (see section 5.12, “is-prime (Prime Numbers)”).

Without the redo, we would get «500500». (This is easily calculated with sum (see section 9.16.1, “The
«sum» Method”): sum(1 .. 1000).)

4.17.5. LABEL

All the loop construts (while, until, loop and for) can have a label, used to identify them for next,
last, and redo. This is useful if we have nested loops, as the statements otherwise would apply to
the same scope only.

69

File: loop-labels

FIRST-ONE:
for 1 .. 20 -> $a
{
 NEXT-ONE: for 0 .. 2 -> $b
 {
 next FIRST-ONE if ($a + $b).is-prime;
 next NEXT-ONE if ($a + $b) % 3;
 say "$a -> $b";
 }
}

$ raku loop-labels
6 -> 0
8 -> 1
9 -> 0
12 -> 0
14 -> 1
15 -> 0
18 -> 0
20 -> 1

Exercise 4.4

What happens of we add a colon after once in the «for-once» program in section 4.17.1, “once”?

70

Chapter 5. Numbers
A number is a numeric value, as e.g. «2», «0» and «3.14».

5.1. Octal, Hex, Binary …
Numbers cannot start with zero, except when specifying the number system (or base):

Number System Short Form General Syntax

Decimal 123 :10<123>

Octal 0o123 :8<123>

Hexadecimal 0x12A39F :16<12A39F>

Binary 0b10101010 :2<10101010>

> say :2<0b10101010>; # -> 170

Note that lower- and uppercase letters are equal in numbers:

> :16<12A39F> == :16<12a39f>; # -> True

We can use a procedure-ish syntax as well:

> say :2("0b10101010"); # -> 170

Placing the value in a variable works, but only with paren syntax:

> my $a ="0b10101010";
> say :1<$a>; # -> Compile time error
> say :1($a); # -> 170

Exercise 5.1

How many number systems (different bases or radixes) are supported by Raku?

Use REPL.

5.1.1. base

We can use the base method to display a number in other number systems (different bases):

71

> say 1200.base(8); # -> 2260
> say 170.base(2); # -> 10101010
> say 256.base(16); # -> FF

Colon Syntax

Arguments to a function can be specified with or without parens:

> say("12", "34"); # -> 1234
> say "12", "34"; # -> 1234

Arguments to a method are usually specified with parens. But we can use the special Colon Syntax
if we want to ommit them:

> say 1200.base(8); # -> 2260
> say 1200.base: 8; # -> 2260

5.1.2. parse-base

parse-base is the opposite of base:

> say "FF".parse-base(16); # -> 255

It round trips:

> say "FF".parse-base(16).base(16); # -> FF

5.1.3. Other conversions

We can also use format strings to convert a number to other bases, with printf, sprintf and fmt:

Directive Description Example

%b Unsigned Integer to Binary 255.fmt('%b'); # → 11111111

%x Unsigned Integer to Hexadecimal 255.fmt('%x'); # → ff

%X As %x, but Uppercase 255.fmt('%X'); # → FF

See sections 6.4, “printf” (and 6.4.3, “sprintf” and 6.4.4, “fmt”) for details.

5.2. Unicode Numbers
Unicode has a lot of characters that are regarded as numeric. Use them if you want to cause
confusion:

72

Well. You may not feel that confused, if your terminal or printer support the characters, but what
about:

5.3. Not a Number
If it starts with a letter (or an underscore) it is either a procedure call, a predefined value, or an
error:

> say # -> error: Missing parameter
> True # -> True
> False # -> False
> abcdic # -> error: Undeclared routine

True and False are built-in. See section 2.11, “True and False”.

5.4. N_U_M_B_E_R_S
You can add underscores in numbers to make the code more readabl. The compiler ignores them.
You must have a digit on both sides of an underscore.

> my $number1 = 1000000000; # -> 1000000000
> my $number2 = 1_000_000_000; # -> 1000000000
> my $number3 = 1_0_0_0 ; # -> 1000

The last one is legal, but stupid.

5.5. Floating Point Numbers
Raku has several numeric types (in addition to integers, which we have discussed already).

5.5.1. pi

pi is built in:

> say pi; # -> 3.14159265358979
> say pi.WHAT; # -> (Num)

The term «floating point» is derived from the fact that there is no fixed number of digits before and

73

after the decimal point; that is, the decimal point can float. Raku calls them Num.

Exercise 5.2

Display pi as a binary number.

> pi.say; # -> 3.141592653589793

Use REPL.

5.5.2. e

Euler’s number e (or the unicode version e) is also available:

> say e; # -> 2.718281828459045

5.5.3. tau

As is tau (or the Unicode version τ):

> say tau; # -> 6.283185307179586
> say tau / pi; # -> 2

tau is the ratio between circumference and radius of a circle.

5.5.4. Floating Point Errors

> my $one-third = 1/3; # -> 0.333333

This is as expected (with the actual number of 3’s shown as the only surprise).

Adding three of them should give us 0.999999:

> say $one-third * 3; # -> 1

But it does not. We do get 1.

5.6. Rational Numbers
Raku has a built in Rat (Rational Number) type.

74

> my $one-third = 1/3; # -> 0.333333
> $one-third.WHAT; # -> (Rat)
> 0.3.WHAT; # -> (Rat)

Yes, the last one is valid syntax!

The Rat type is automatically used for values with a decimal fraction, if possible. Otherwise the
floating point type Num is used.

The Rat type uses two integers internally; the actual value is the first divided by the second.

We can use the nude («Numerator» + «Denominator»; «Nu» + «De») method to get the values:

> (1/3).nude; # -> (1 3)
> (0.1).nude; # -> (1 10)
> 0.2.nude; # -> (1 5)

So where does 0.333333 come from?

The conversion happens when we print the value, as that converts it to a string.
This happens as a zero with a point and an infinite number of 3’s after it isn’t
something we can (or should) print.

See section 6.2, “Stringification” for detalis.

5.7. narrow
Returns the number converted to the narrowest type that can hold it without loss of precision.

> say (4.0 + 0i).narrow.perl; # -> 4
> say (4.0 + 0i).narrow.^name; # -> Int

It is also possible to apply a type directly, but you may loose precision:

> say pi.Int; # -> 3

5.8. sign
sign converts the value to Numeric and returns the sign; 0 if the number is 0, 1 for positive, and -1
for negative values.

75

> say 6.sign; # -> 1
> say (-6).sign; # -> -1
> say "0".sign; # -> 0

5.9. Rounding
We can force a non-integer number to an integer in several ways.

5.9.1. round

Use round to round the invocant (converted to Numeric if necessary) to nearest integer:

> say 1.7.round; # -> 2
> say (−0.5).round; # -> 0
> say (.5).round; # -> 1

round can take a second argument, specifying a value that we’ll round off to (a multiple of):

> say 1.07.round(0.1); # -> 1.1
> say 21.round(10); # -> 20

5.9.2. truncate

Use truncate to round the invocant (converted to Numeric if necessary) towards zero.

> say 1.2.truncate; # -> 1
> say truncate -1.2; # -> -1

5.9.3. floor

Use truncate to round the invocant (converted to Numeric if necessary) downwards to the nearest
integer.

> say "1.99".floor; # > 1
> say "-1.9".floor; # -> -2

5.9.4. ceiling

Use ceiling to round the invocant (converted to Numeric if necessary) upwards to the nearest
integer.

76

> say "1".ceiling; # -> 1
> say "-0.9".ceiling; # -> 0
> say "42.1".ceiling; # -> 43

5.9.5. gcd (Greatest Common Divisor)

Converts both arguments to integers returns the greatest common divisor, the largest number that
can integer divide them both).

> say 10 gcd 12; # -> 2

5.9.6. lcm (Least Common Multiple)

Converts both arguments to integers and returns the least common multiple, the smallest integer
that is evenly divisible by both arguments.

> say 10 lcm 12; # -> 60
> say 10 lcm 2; # -> 10
> say 2 lcm 3; # -> 6

5.9.7. msb (Most Significant Binary)

msb returns Nil if the number is 0. Otherwise it returns the position (a zero-based index) from the
right of the most significant (highest value) digit 1 in the binary representation of the number:

> say 0b00001.msb; # -> 0
> say 0b00011.msb; # -> 1
> say 0b00101.msb; # -> 2
> say 0b01010.msb; # -> 3
> say 0b10011.msb; # -> 4

5.10. NaN (Not a Number)
The value NaN is of the Num type, and is used to represent a floating point «Not a Number» value. It is
used as returned value from some methematical functions where there is no actual Numeric
answer - but a Numeric value is still acceptable.

NaN is defined and coverts to True in boolean context. It is not numerically equal to any value,
including itself.

> say cos ∞; # -> NaN
> say (0/0).Num; # -> NaN

77

5.10.1. isNaN

Use the isNaN method (or the === operator) to test for NaN:

> say (0/0).isNaN; # -> True

We can test for NaN explicitly with the Value identity operator === (see section 3.7.7, “===”) if we
want to:

> say (0/0).Num === NaN; # -> True

5.11. =~=
Use the approximately-equal operator =~= (or the Unicode version ≅) to decide if the two values are
numerically almost equal. True if returned if the difference is less than the special dynamic value
$*TOLERANCE (which defaults to 1e-15), and False otherwise.

The example we used to explain Rat (See section 5.6, “Rational Numbers”) was 1/3. Without Rat this
would be the result:

> my $b = 0.3333333333333333 * 3;

> say $b; # -> 0.9999999999999999
> say $b == 1; # -> False;
> say $b =~= 1; # -> True

Note that the Rat type reduces the need for =~= in practice.

5.12. is-prime (Prime Numbers)
A prime number is a number (integer) that can only be divided by 1 and itself.

Use is-prime to find out if a given value is a prime number:

> 7.is-prime; # -> True
> 1.4.is-prime; # -> False

 The last one shows why a method or procedure name cannot start with a digit.

78

Exercise 5.3

Write a program that adds all the prime numbers (in numerically increasing order) from 1 to
100_000 (both included) showing if the sum is a prime or not.

Display how many of those sums are primes.

5.13. Modulo and variants

Numeric Int Description

% mod Modulo operator

%% Divisibility operator

5.13.1. %

Use the modulo operator % to get the remainder after a divison:

> say 10 % 3; # -> 1 # 3 * 3 + 1
> say 11 % 3; # -> 2 # 3 * 3 + 2
> say 12 % 3; # -> 0 # 4 * 3 + 0

The modulo operator % converts the values to Numeric before the division, and can be used on non-
integers as well:

> say 12 % "3.1"; # -> 2.7

5.13.2. mod

mod is the Integer version of %. The values must be integers:

> say 7 mod 3; # -> 1 # 2 * 3 + 1
> say 8 mod 3; # -> 2 # 2 * 3 + 2
> say 9 mod 3; # -> 0 # 3 * 3 + 0

5.13.3. %%

The Divisibility operator %% is the twin sister of the Modulo operator. The Modulo operator returns
the result of the divison, and the Divisibility operator %% return True if the remainder is zero:

> say 9 %% 3; # -> True
> say 11 %% 3; # -> False
> say 9.3 %% "3.1"; # -> True

79

The Divisibility operator %% converts the values to Numeric before the division, and can be used on
non-integers as well.

The Divisibility operator is a shortcut for: $a % $b == 0.

Exercise 5.4

Write a program that adds every number from 1 to 1000 that isn’t divisible by 7. Use next.

5.14. Other Operators
Raku has a lot of builtin mathematical operators.

5.14.1. sqrt

The square root of a number:

> say sqrt(9); # -> 3
> say sqrt(-1); # -> NaN
> say sqrt(-1 + 0i); # -> 0+1i

5.14.2. exp

Converts the arguments to Numeric, and returns $base raised to the power of $power. e (Euler’s
Number; see section 5.5.2, “e”) is used if $base isn’t provided.

> $power.exp($base);

> say exp 3; # -> 20.085536923187668
> say 3.exp; # -> 20.085536923187668
> say 2.exp(3); # -> 9
> say exp(2, 3); # -> 9

5.14.3. **

The exponentiation operator ** converts both arguments to Numeric and calculates the left-hand-
side raised to the power of the right-hand side:

> say 2 ** 3; # -> 8
> say 3 ** 2; # -> 9
> say e ** 3; # -> 20.085536923187664

80

Note the rounding error (even though they should be identical):

> say e ** 3 - exp 3; # -> -3.552713678800501e-15

 It is also possible to use Unicode superscript digits, e.g.: 23 is the same as 2 ** 3.

5.14.4. expmod

expmod returns the first argument raised to the power of the second element, and applies the third
argument as modulus on that:

> say expmod(4, 2, 5); # -> 1 ## The same as: 4 ** 2 mod 5
> say 7.expmod(2, 5); # -> 4 ## The same as: 7 ** 2 mod 5;

The method form requires integers. The procedure version accepts non-integers as well, but
truncates them to integers.

5.14.5. log

log returns the Logarithm to the specified base (which defaults to e, Euler’s Number; see section
5.5.2, “e”, if not given) of the given value:

> say log(10); # -> 2.302585092994046
> say log(10, e); # -> 2.302585092994046

The result (2.302585092994046) is a number that when raised to the power of the base (e) gives the
value (10), or rather an approximation:

> say exp 2.302585092994046; # -> 10.000000000000002

Let us try with another base:

> say log(10, pi); # -> 2.0114658675880612
> say exp(2.0114658675880612, pi); # -> 10.000000000000002

It returns NaN if the base is negative, and throws an exception if it is 1.

log10

log10 returns its Logarithm to base 10, that is, a number that approximately produces the original
number when raised to the power of 10.

It can be replaced by log:

81

> say log10(1001); # -> 3.0004340774793183
> say log(1001,10); # -> 3.0004340774793183

It returns NaN for negative arguments and -Inf for 0.

5.14.6. Trigonometric Functions

This is the complete list. Thay all take radians:

Function Description

sin sine

asin arc-sine

cos cosine

acos arc-cosine

tan tangent

atan arc-tangent

atan2 arc-tangent (two argument form)

sec secant

asec arc-secant

cosec cosecant

acosec arc-cosecant

cotan cotangent

acotan arc-cotangent

sinh sine hyperbolicus

asinh inverse sine hyperbolicus

cosh cosine hyperbolicus

acosh inverse cosine hyperbolicus

tanh tangent hyperbolicus

atanh inverse tangent hyperbolicus

sech secant hyperbolicus

asech inverse secant hyperbolicus

cosech cosecant hyperbolicus

acosech inverse secant hyperbolicus

cotanh hyperbolic cotangent

acotanh inverse hyperbolic cotangent

cis cos(argument) + i*sin(argument)

82

If you cannot find the function you are looking for in this table, have a look at the
«Math::Trig» module.

We’ll install and have a closer look at «Math::Trig» in Exercise 12.1.

Exercise 5.5

You have a jar (or cylinder) with internal radius 10cm. It is 50cm high. How many litres of liquid
can it hold?

Don’t rembember the formule? Look it up. E.g. https://www.varsitytutors.com/
hotmath/hotmath_help/topics/volume-of-a-cylinder

Exercise 5.6

You are offered two jars (or cylinders), the first one with internal radius 10cm and height 35cm,
and the second one with internal radius 35cm and height 10cm. You want the biggest one (in terms
of content). Which one do you choose?

83

https://www.varsitytutors.com/hotmath/hotmath_help/topics/volume-of-a-cylinder
https://www.varsitytutors.com/hotmath/hotmath_help/topics/volume-of-a-cylinder

84

Chapter 6. Basic Input and Output
This chapter discusses input from the user, and output to the screen.

(Files are discussed in Chapter 13, Files and Directories.)

6.1. Newlines
All functions that reads something (from a file or the terminal) strips off trailing newline
character(s) by default. (And say adds them back on.)

The newline is marked with one or two characters:

Operating System Character(s) In strings Codepoint

Windows <CR><LF> \r\n 10 + 13

Linux <LF> \n 10

Mac OSX <LF> \n 10

Mac (old) <CR> \r 13

The special variable $?NL reports what the compiler will use when we print a newline (either
implicitly with say or explicitly with "\n".

$?NL gives the actual newline character(s), so just printing the variable doesn’t help.

We can use ords (see section 7.1.6.1, “ords”) to get the codepoints:

> $?NL.ords; # On Linux we get «10»
(10)

The variable is read only:

> $?NL = "\n";
Cannot assign to an immutable value in block <unit> at <unknown file> line 1

6.1.1. chop

chop coerces the invocant (or in sub form, its argument) to a string, and returns it with the last
character removed.

> say "abcde".chop; # -> abcd

The removed character is not obtainable in any way, so chop cannot be used to iterate over a string
(from the end). Use comb instead (see section 7.5, “comb”).

85

chop takes an optional parameter, specifying the number of characters to remove:

> say "abcde".chop(2); # -> abc

6.1.2. chomp

chomp coerces the invocant (or in sub form, its argument) to a string, and returns it with the last
character removed, if it is a logical newline.

This isn’t very useful in practice, as the standard reading behaviour removes newline characters by
default.

6.2. Stringification
There are three built-in ways for explicit stringification of a non-string value: gist, Str and perl.
The differences can be summarised like this:

Expression gist Str perl comment

pi 3.141592653589793 3.141592653589793 3.141592653589793e0 [1]

$a = pi 3.141592653589793 3.141592653589793 3.141592653589793e0

1/3 0.333333 0.333333 <1/3> [2]

$b = 1/3 0.333333 0.333333 <1/3>

Any (Any) Error Any [3]

$c = Any (Any) Error Any [4]

(1..5) 1..5 1 2 3 4 5 1..5

@a = 1..5 [1 2 3 4 5] 1 2 3 4 5 [1, 2, 3, 4, 5]

(1..Inf) 1..Inf 1..* 1..Inf [5]

@b = (1..Inf) Error [6]

[1] The pi constant is a Floating point number (see section 5.5, “Floating Point Numbers”), with the
internal type Num.

[2] The 1/3 expression gives a Rational Number (see section 5.6, “Rational Numbers”, with internal
type Rat.

[3] The error message is «No such method 'str' for invocant of type 'Any'. Did you mean 'Str'?».

[4] The error message is «Use of uninitialized value $a of type Any in string context».

[5] The 1..Inf expression is a lazy list. The individual values are only evaluated when they are
needed. See section 16.1.1, “Lazy vs Eager” for more information.

[6] The error message is «Cannot .elems a lazy list».

Note the difference in outut from lists (lazy or not) when we assign them.

86

6.2.1. gist

The dictionary definition of «gist» is «the substance or general meaning of a speech or text.»

Every object has a gist method (inherited from the base class «Mu», see section 3.2, “^mro (Method
Resolution Order)”). Its mission (according to the official documentation) is to «Return a string
representation of the invocant, optimized for fast recognition by humans.»

Note that gist will return partial information about the object if it is large (e.g. a
long list)

> my @a = (1 .. 200)
[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
99 100 ...]

Str and perl will show every element.

6.2.2. Str

The main difference between gist and Str is that Str flattens data structures, and fails on
undefined values.

> (1/3).say # Implicit .gist call
0.333333

> (1/3).gist.say # Explicit
0.333333

> (1/3).put # Implicit .Str call
0.333333

> (1/3).Str # Explicit
0.333333

> (1/3).perl # This shows what the compiler is actually storing, in a readable form
<1/3>

When we display a non string value, we get a stringified version of the value. Raku has decided that
6 digits after the decimal point is enough for Rational numbers.

87

Note that the choice of six digits after the comma when stringifying Rational
Numbers may give output that doesn’t look right, as Floating Point Numbers are
shown with more digits.

> my $r = 1/3; # -> 0.333333
> my $s = .3333333333333; # -> 0.3333333333333
> say "$r > $s ? {$r > $s}" # -> 0.333333 > 0.3333333333333 ? True

Coercing a Rational Number to another type, and back again, can also be
problematic:

> 1/3 <=> 0.33333333333333; # -> More
> (1/3).Str.Num cmp 0.33333333333333; # -> Less

The first 1/3 is actually 1/3 when we do the three way comparison (see section
3.7.3, “<=>”). The second is 0.333333 after stringification and coersion back to a
numeric value.

When we use say it calls the .gist method to stringify non-string values:

> (1/3).say # Implicit .gist call
0.333333

> (1/3).gist.say # Explicit
0.333333

Coercing the value to a Floating Point Number, before stringification, gives a different result:

> (1/3).Num.say
0.3333333333333333

6.2.3. perl

Every object has a perl method. It can be used to dump the object (recursively), and it shows the
objects as Raku actually stores them.

This method is useful for dumping of data structures in a format suitable for passing to a program
later on.

> say (1/3).perl; # -> <1/3>

88

6.3. Output
We have used say (and sometimes print) to display data on the screen, but we have put as well:

Without \n With \n Stringifiction

print say .gist

put .Str

.perl

6.3.1. say

say is the preferred output method in Raku (instead of print). It adds a newline at the end.

Note that say $a uses gist, but as soon as you put it in a string, e.g. say "$a" it uses
Str to sort out the string. This applies to strings inside curlies as well, e.g. say "* {
$a }*".

> my $a = Any;

> say $a;
(Any)

> say "$a";
Use of uninitialized value of type Any in string context.

> say " { $a } ";
Use of uninitialized value of type Any in string context.

> say "* { $a.gist } *";
* (Any) *

89

Be careful with undefined values:

> my $a = Any; say $a;
(Any)

> my $a = Any; say ": $a"'
Use of uninitialized value of type Any in string context.

> my $a = Any;
> say "The value is: $a";
Use of uninitialized value of type Any in string context.
Methods .^name, .perl, .gist, or .say can be used to stringify it to
something meaningful.
 in block <unit> at <unknown file> line 1

It must be stringified manually, with gist or perl (that handle undefined values):

> say "The value is: { $a.perl }";
The value is: Any

6.3.2. put

put uses Str on the values, regardless of type. It adds a newline at the end.

> say ^10; # -> ^10
> put ^10; # -> 0 1 2 3 4 5 6 7 8 9

Again, beware of interpolation:

> put "{ ^10 }"; # -> 0 1 2 3 4 5 6 7 8 9
> say "{ ^10 }"; # -> 0 1 2 3 4 5 6 7 8 9

6.3.3. put vs say

Why use put instead of say (as advocated in the book «Learning Perl 6»):

• say uses gist

• put uses Str

my @a = 1..5 Result

say @a [1 2 3 4 5]

put @a 1 2 3 4 5

say "@a[]" 1 2 3 4 5

90

my @a = 1..5 Result

put "@a[]" 1 2 3 4 5

6.3.4. print

print (and say and put) prints to the specified filehandle, and to $*OUT if used without one.

print is the same as say, except that it doesn’t add a newline at the end.

6.4. printf
Use printf («print formatted») to format values before printing them.

When used as a function, the first argument is the format string and the rest is the values to print:

> my $x = 1;
> printf("%e\n", $x); # -> 1.000000e+00

I recommend using single quotes on the format string. I had to use double quotes
above to get the newline.

The line above works because hash variables are not interpolated in strings unless
we add {} at the end. (And remember that we have to add [] after an array
variable to get that interpolated.)

> my %e = (A => 14);
> my $x = 1;
> printf("%e\n", $x); # -> 1.000000e+00
> printf("%e{}\n", $x);
Your printf-style directives specify 0 arguments, but 1 argument was
 supplied in block <unit> at <unknown file> line 1

Now %e{} means the hash variable, and the format string has no directives. Then it
gets one argument, and complains.

When used as a method, we invoke it on the format string, and pass the values as arguments:

> "%s\n".printf($x);

The example uses %s which means a string, and it prints the string we pass it, attaching a newline at
the end.

The directives are:

Sequence Description

91

% A literal percent sign

%b An unsigned integer, in binary

%c A character with the given codepoint

%d A signed integer, in decimal

%e A floating-point number, in scientific notation

%E Like e, but using an uppercase "E"

%f A floating-point number, in fixed decimal notation

%g A floating-point number, in %e or %f notation

%G Like g, but with an uppercase "E" (if applicable)

%o An unsigned integer, in octal

%s A string (stringification with Str)

%u An unsigned integer, in decimal

%x An unsigned integer, in hexadecimal

%X Like x, but using uppercase letters

Some examples:

> printf("%e\n", 1);
1.000000e+00

> my $name = "Tom";
> printf("Hello %s, and welcome to the jungle!\n", "$name");
Hello Tom, and welcome to the jungle!

Normal interpolation of variables inside strings reduces the usefulness of printf:

> my $name = "Tom";
> print "Hello $name, and welcome to the jungle!\n";
Hello Tom, and welcome to the jungle!

6.4.1. Parameter Index

If the number of arguments doesn’t match with the format string we get an error (as shown in the
Warning above):

> printf("%s\n", "Tom", 11222);
Your printf-style directives specify 1 argument, but 2 arguments were supplied
 in block <unit> at <unknown file> line 1

It is possible to shuffle the order they are used:

92

> printf("Hello %s, and %s.\n", "Tom", "Welcome");
Hello Tom, and Welcome.

> printf('Hello %2$s, and %1$s.' ~ "\n", "Tom", "Welcome");
Hello Welcome, and Tom.

The first argument is specified as 1$, the second one as 2$ and so on.

It is also possible to reuse arguments:

> printf('Hello %1$s, and %1$s.' ~ "\n", "Tom");
Hello Tom, and Tom.

6.4.2. Flags

We can specify flags between the % and the letter:

Flag Description Example Result

space Prefix a non-negative number with a space printf '§% d§', 12; § 12§
printf '§% d§', 0; § 0§
printf '§% d§', -12; §-12§

+ Prefix a non-negative number with a plus
sign

printf '§%+d§', 12; §+12§
printf '§%+d§', 0; §+0§
printf '§%+d§', -12; §-12§

number Add leading spaces so that the value uses
at least this number of characters

printf '§%6s§', 12; § 12§

- Add trailing spaces (instead og leading) printf '§%-6s§', 12; §12 §

0 Use leading zeros, not spaces, for padding printf '§%06s§', 12; §000012§

Show a leading "0" and the type prefix
(hexadecimal with "0x" or "0X", octal with
"0o" and binary with"0b" or "0B")

printf '§%#o§', 12; §014§
printf '§%#x§', 12; §0xc§
printf '§%#X§', 12; §0XC§
printf '§%#b§', 12; §0b1100§
printf '§%#B§', 12; §0B1100§

It is possible to specify the number as a parameter. The following lines give the
same result:

> printf '|%6s|', 12; # -> | 12|
> printf '|%*s|', 6, 12; # -> | 12|

This makes it easy to specify the width as a variable.

It is also possible to specify the maximum number of characters to display. See

93

https://docs.raku.org/routine/sprintf for details.

6.4.3. sprintf

sprintf («string print formatted») behaves the same way as printf (see the previous section), but it
return the string instead of printing it.

We can use sprintf and say to avoid specifying the newline:

> printf('Hello %2$s, and %1$s.' ~ "\n", "Tom", "Welcome");
Hello Welcome, and Tom.

> say sprintf('Hello %2$s, and %1$s.', "Tom", "Welcome");
Hello Welcome, and Tom.

sprintf is a function only. The corresponding method is fmt (see the next section):

> my $t1 = $string.fmt($format);
> my $t2 = sprintf($format, $string); # Exactly the same

6.4.4. fmt

fmt is the method version of the sprintf function (see the previous section).

If fmt is used without a format parameter, it defaults to %s.

Some examples:

> say 1200.fmt("%o"); # -> octal
2260

> say 1200.fmt("Octal: %o"); # More verbose.
Octal: 2260

> say 1200.fmt('Decimal: %1$d - Octal: %1$o');
Decimal: 1200 - Octal: 2260

6.5. Input from the user

6.5.1. prompt

Use prompt to display an optional message and wait for the user to type something.

94

https://docs.raku.org/routine/sprintf

File: prompt

my $name = prompt "What's your name? ";
say "Hi, $name! Nice to meet you!";

 prompt is say and get (see section 13.6, “get”) combined.

Remember the difference between numbers and strings?

• A value in quotes is a string

• A value without quotes is a either a number or an error

So what happens when we have input from the terminal, where we don’t use quotes on strings?

Let us try, by applying ^name on a variable filled with prompt:

File: prompt-type

loop
{
 my $name = prompt "Enter a value (or return to exit): " or exit;
 say "Value $name is of the type { $name.^name }.";
}

$ raku prompt-type
Enter a value (or return to exit): Allan
Value Allan is of the type Str.
Enter a value (or return to exit): 12
Value 12 is of the type IntStr.
Enter a value (or return to exit): "12"
Value "12" is of the type Str.
Enter a value (or return to exit):

Raku is able to guess the type, except when we specify something that looks like a number - without
quotes.

Then the type is IntStr, something than can be a string and an integer at the same time - without
type conversion as we’d normally need.

6.5.2. Str Inheritance Tree

We find the IntStr type in the Inheritance tree for Str:

95

Figure 9. Inheritance Tree for Str

The Graph Online: https://docs.raku.org/type/Str#Type_Graph

See section 3.2.1, “Int Inheritance Tree” for the Int Inheritance Tree.

> say IntStr.^mro; # -> ((IntStr) (Int) (Str) (Cool) (Any) (Mu))
> say Str.^mro; # -> ((Str) (Cool) (Any) (Mu))
> say Int.^mro; # -> ((Int) (Cool) (Any) (Mu))

Note that ^mro (method resolution order) is just that - the order of the classes where methods are
looked up - for the type it is applied on.

Applying perl on the mro object makes it clearer that this is just a flat structure (a list):

> say IntStr.^mro.perl; # -> (IntStr, Int, Str, Cool, Any, Mu)

We avoided the problem (if we look at it like a problem that is) of an IntStr value by using quotes.
But that doesn’t work when we have input from the command line (where shell quoting is an
issue); see section 10.10.1, “MAIN with typing”.

Exercise 6.1

Write a program that asks for a number, assuming the input is in binary and all the way up to
hexadecimal format, printing the value in decimal.

Don’t print the value if it fails; e.g «12» isn’t binary.

96

https://docs.raku.org/type/Str#Type_Graph

Chapter 7. Strings
This chapter presents strings and some basic things we can do with them.

Strings are true scalar values, and cannot be treated as a list of characters. (We can convert it to a
list of characters, as we’ll see later, but that is another matter.)

We cannot pick a single character from a string.

7.1. Unicode
All strings are encoded in Unicode.

Note the common naming structure of these functions:

One value Several values Description

uniname uninames Get the unicode name(s) of the character(s)

uniparse Get the Unicode character with the given unicode name

ord ords Get the Unicode code point(s) of the character(s)

chr chrs Get the Unicode character(s) with the given code points(s)

The missing several-value edition of uniparse is easy to implement with a hyper
operator. We will cover both in the «Advanced Raku» course.

7.1.1. chars

Use chars to get the number of characters in a string:

> say "abc".chars; # -> 3

If used on anything else, it will be converted to a string:

> say chars(pi); # -> 17

We can use chop and chars to get the first character in a string:

> my $s = "1234567890";
> say $s.chop($s.chars -1); # -> 1

But we’ll show better ways later.

Note that the value is the number of Unicode Graphemes, or user visible characters. If it looks like a
single character, it is a single Grapheme.

97

Let us consider the Scandinavian letter «Å». It is present in the Unicode character set (with the code
U+00C5), and can be used «out of the box». In Unicode we can also make it up by combining the
letter «A» (U+0041) with a «Combining Ring Above» (U+030A) like this:

> my $s = "A\c[Combining Ring Above]"; # -> Å
> say $s.chars; # -> 1
> say "A\c[Combining Ring Above]" eq "Å"; # -> True

The code above shows us that Raku normalizes the string when it reads it in,
whether from a string or a file. This means that what you get isn’t necessarily what
was given.

(Newlines (the end of line marker, which differ on Unix, Windows and Mac) are
also normalized, as described in section 6.1, “Newlines”.)

7.1.2. Combining Characters

The combining character (or characters) come after the base character. (This means that the
compiler will have to look at least one byte ahead when it reads strings one character at a time; e.g
for $string.comb → $char { … }.)

7.1.3. codes

This gives us the number of Unicode Code Points. It is usually the same as chars.

> say "12øøæåsaåsæ".codes; # -> 11
> say "12øøæåsaåsæ".chars; # -> 11

> say "A\c[Combining Ring Above]".codes; # -> 1
> say "A\c[Combining Ring Above]".chars; # -> 1

As Unicode have a Å character. We can try something that Unicode doesn’t have:

> say "O\c[Combining Ring Above]".codes; # -> 2
> say "O\c[Combining Ring Above]".chars; # -> 1

7.1.4. uniname

Use uniname to get the Unicode name for the first character (grapheme) in the string:

> say "A\c[Combining Ring Above]".uniname;
LATIN CAPITAL LETTER A WITH RING ABOVE

> say "abc".uniname;
LATIN SMALL LETTER A

98

We can specify any character with the Unicode name:

> say "\c[LATIN SMALL LETTER A]"; # -> a
> say "\c[Latin Small Letter a]"; # -> a

uninames

Use uniname to get the Unicode name for all the character(s) in a string:

> say "O\c[Combining Ring Above]".uninames;
(LATIN CAPITAL LETTER O COMBINING RING ABOVE)

We can use the perl method to get a nicer list:

> say "O\c[Combining Ring Above]".uninames.perl;
("LATIN CAPITAL LETTER O", "COMBINING RING ABOVE").Seq

> say ‘»ö«’.uninames.perl;
«("RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK", "LATIN SMALL LETTER O WITH DIAERESIS",
"LEFT-POINTING DOUBLE ANGLE QUOTATION MARK").Seq»

7.1.5. uniparse

We can use uniparse on a Unicide name to get the character:

> say "LATIN SMALL LETTER A".uniparse; # -> a

It fails if we pass it something illegal:

> uniparse("LATIN SMALL LETTER A WITH VERTICAL LINE BELOW AND ACUTE");
Unrecognized character name [LATIN SMALL LETTER A WITH VERTICAL LINE BELOW AND ACUTE]
 in block <unit> at <unknown file> line 1

7.1.6. ord

Use ord to get the Unicode code point (a number) of one character:

> "A".ord; # -> 65
> "Abba".ord; # -> 65

ords

Use ords to get the Unicode code points (numbers) of all the characters in a string:

99

> "Abb".ords; # -> (65 98 98)

We can revisit the combined characters we showed in the 7.1.3, “codes” section:

> say "A\c[Combining Ring Above]".ords; # -> (197)
> say "O\c[Combining Ring Above]".ords; # -> (79 778)

Note that Unicode merges the first one, the «A» and the combiner as it exist as a separate Unicode
character.

Be very careful with ord on what you think is a single chartacter:

> say "O\c[Combining Ring Above]".ord; # -> 79

7.1.7. chr

Use chr to turn an integer into a Unicode character.

> say 65.chr; # -> A ## Decimal
> say 0x41.chr; # -> A ## Hexadecimal

chrs

Use chrs to turn a list of integers into a string of Unicode characters:

> say <67 97 109 101 108 105 97>.chrs; # -> Camelia

We can have a go at the combined characters again:

> say (79, 778).chrs.ords; # -> (79 778)
> say "O\c[Combining Ring Above]".chrs.ords; # -> (79 778)

Note that they don’t always round trip.

> say 197.chr; # -> Å
> say (65, 778).chrs; # -> Å
> say (65, 778).chrs.ords; # -> (197)

Note that the «A» and the combiner is replaced by a separate Unicode character.

100

Exercise 7.1

Write a program that asks for input (in a loop), and replaces every lower case letter (a-z only) with
the upper case version, and vice versa, before printing it on the screen. Other characters are left
unchanged.

Use ord/ords and chr/chrs.

7.2. join
We can use join to glue a list of strings together:

> say <1 2 3>.join; # -> 123

If we specify an argument to join, that string will be used between the elements. We can generate a
CSV-file line like this:

> say <12 hello 3.14 bingo 87>.join(";"); # -> 12;hello;3.14;bingo;87

7.3. split
This is the opposite of join:

> say "12;hello;3.14;bingo;87".split(";"); # -> (12 hello 3.14 bingo 87)

Note that the text we split on (in this case ;) is not included in the result.

split takes an optional second argument, an integer telling it how many parts to split it into:

> "12;hello;3.14;bingo;87".split(";", 2)
(12 hello;3.14;bingo;87)

7.4. words
We can use split and a space character split a string in words:

my @words = $text.split(" ");

Note that this doesn’t quite work out if we have mutliple spaces after each other. (We could have
used a Regex as argument to split to fix that, and we’ll do that when we get to Chapter 11, Regex
Intro.)

101

But the words method is self-explanatory, and it handles multiple spaces:

my @words = $text.words;

words doesn’t handle punctuation characters very well:

> "This is it, isn't it? Or perhaps not. 2nd try".words.join("|");
This|is|it,|isn't|it?|Or|perhaps|not.|2nd|try

One possible solution would be replacing everything that isn’t a letter or digit with
a space character, before applying words.

It is possible to use the <one two …> Quote Words construct as well. See section 8.3,
“<xxx> (Quote Word)”.

7.5. comb
We can use split to get a list of single characters from a string:

> say "12345".split(""); # -> (1 2 3 4 5)
> say "12345".split("").elems; # -> 7

Note the empty first and last element.

 elems gives us the number of elemens in the list.

It is better to use comb:

> say "12345".comb; # -> (1 2 3 4 5)
> say "12345".comb.elems; # -> 5

It is possible to get groups of characters:

> say "12345".comb(2); # -> (12 34 5)

102

Exercise 7.2

Write a program that asks for integer values in a loop.

If the value is an integer, compute the sum of all the digits.

Tip: Start with «prompt-type» from section 6.5.1, “prompt”.

Exercise 7.3

Write a program that asks for input in a loop.

• Show the last character

• Show every second character

7.6. flip
We can use comb, reverse and join to reverse a string:

> say "abc123".comb.reverse.join; # -> 321cba

comb gives us a list of single characters, reverse reverses the order of this list, and join merges the
list back together as a string.

But it is easier to use the flip method to reverse a string:

> say "abc123".flip; # -> 321cba

7.7. substr (Partial Strings)
Use substr (substring) to get part of a string, starting at the position given as offset (so the first
character is at position 0) and returning the rest of it:

> say "1234567890".substr(3); # -> 4567890

The length (number of characters) can be specified as well:

> say "1234567890".substr(3, 2); # -> 45

We can get the last character of a string (ref Exercise 7.3):

103

> my $s = "123456";
> say $s.substr($s.chars -1); # -> 6

This also works, where * means «from the end»:

> $s.substr(* -1)

7.7.1. substr-eq (Partial Strings)

substr-eq is a combination of substr and eq:

say "abc123".substr-eq("c123", 3); # -> False ## As "123" ne "c123"
say "abc123".substr-eq("c123", 2); # -> True ## As "c123" eq "c123"

Note that we cannot specify the length, as we could with substr.

7.7.2. substr-rw (Partial Strings) ♦

substr-rw is a version of substr that returns a writable view to the specified part of the string (as
opposed to substr that merely returns a copy).

> my $s = "abc"; $s.substr-rw(1, 1) = "Q"; $s.say; # -> aQc
> my $s = "abc"; substr-rw($s, 1, 1) = "Q"; $s.say; # -> aQc

We are not restricted by the length:

> my $s = "abc"; $s.substr-rw(1, 1) = "QQQ"; $s.say; # -> aQQc

The second argument decides how many characters to remove. We can set it to zero to make an
insertion:

> my $s = "abc"; $s.substr-rw(1, 0) = "ZZ"; $s.say; # -> aZZbc

We can make an alias to a substring with binding (see section 2.6.2, “:= (Binding)”):

104

File: substr-rw

my $string = "abc*123*ABC";

my $partial := $string.substr-rw(4, 3);

say "$string - $partial"; ## -> abc*123*ABC - 123

$partial = "9876543210";

say "$string - $partial"; ## -> abc*9876543210*ABC - 987

$string = "123|abc|456";

say "$string - $partial"; ## -> 123|abc|456 - abc

Note that even if we replace 3 characters (123) with 10 (9876543210) the alias is to the same position
and length in the original string.

7.8. Changing Case
In Exercise 7.1 we changed letters from upper- to lower case, and vice versa, with ord and chr, but
it is easier to use the builtin functions.

Function Description

lc Lower Case

tc Title Case

tclc Title Case Lower Case

uc Upper Case

fc Fold Case

wordcase Word Case

7.8.1. lc (Lower Case)

Returns a copy of the string with all the characters converted to lower case.

> say "this is IT!".lc; # -> this is it!

7.8.2. tc (Title Case)

Returns a copy of the string with the first character converted to title case (or upper case, if title
case isn’t available), and the rest unchanged.

> say "this is IT!".tc; # -> This is IT!

105

«Title Case» is almost the same as «Upper Case» on the first letter. See
http://unicode.org/faq/casemap_charprop.html for details if you are curious.

7.8.3. tclc (Title Case Lower Case)

Returns a copy of the string with the first character converted to title case (or upper case, if title
case isn’t available), and the rest converted to lower case.

> say "this is IT!".tclc; # -> This is it!

7.8.4. uc (Upper Case)

Returns an uppercase version of the string.

> say "this is IT!".uc; # -> THIS IS IT!

7.8.5. fc (Fold Case)

Returns a version of the string using the Unicode «fold case» method. This is recommended for
string comparisons only.

> say "this is IT!".fc; # -> this is it!

Why «Case Folding» is recommended:

We can convert the strings to upper case:

> say "Saß".uc # -> "SASS"
> say "Sass".uc # -> "SASS"

The German lower case «double s» "ß" is converted to uppercase "SS" (and the
length of the string has changed). So if we compare the strings "Saß".uc and
"Sass".uc they are equal.

Converting to lower case seems safer, and I haven’t found an example that it
doesn’t work. (Feel free to help me out.) But «Case Folding» is guaranteed to work.

7.8.6. wordcase

Returns a copy of the string with the first character in each word converted to upper case, and the
rest converted to lower case.

> say "this is IT!".wordcase; # -> This Is It!

106

http://unicode.org/faq/casemap_charprop.html

Note that wordcase accepts two optional arguments:

• :filter - A function to use instead of the built in wordcase

• :where - A boolean expression that turns the conversion on/off for each word

> say "this is IT!".wordcase(:where({ .chars == 2 })); # -> this Is It!
> say "this is IT!".wordcase(:filter(&uc), :where({ .chars == 2 })); # -> this IS IT!

We specify code inside curlies inside the parens. Procedures are specified without the curlies, but
with a & prefix.

 Why do you think this function doesn’t have the normal two letter name?

Exercise 7.4

Rewrite «swap-case» from Exercise 7.1 so that it also converts unicode letters, that is letters other
than a-z.

7.9. x (String Repetition Operator)
Use the String Repetition Operator x to duplicate the string on the left side the number of times
given on the right side:

> say "123 " x 2; # -> 123 123
> say "123 " x pi; # -> 123 123 123

The repetition count must be a number (or something that can be converted to a number), and it
will be truncated unless already an integer.

Do not use x as a multiplication operator. It isn’t. Using it on numbers will stringify
them:

> say 3 x 4; # -> 3333
> say 4 x 3; # -> 444

But you can use the Unicode Multiplication sign × (with codepoint «U+00D7»):

> say 3 × 4; # -> 12
> say 4 × 3; # -> 12

107

7.10. succ
succ (Successor) used on a number gives us the number incremented by one.

> say pi.succ; # -> 4.141592653589793
> say 109.succ; # -> 110

But it is much more useful (and magic) on strings:

> say 'aa'.succ; # -> ab
> say 'az'.succ; # -> ba
> say 'α'.succ; # -> β
> say 'a9'.succ; # -> b0

If there are no dots (periods or .) in the string, the last alphanumeric sequence is incremented. If
there are one or more dots, the last alphanumeric sequence before the first dot is incremented.

> say 'a.a.a.a.a'.succ; # -> b.a.a.a.a
> say 'img001.png'.succ; # -> img002.png

When it reaches the end of the character range (the digits 0-9, letters a-z or other Unicode ranges), it
adds another character (as normal in a numeric situation):

> say 99.succ; # -> 100
> say 'z'.succ; # -> aa

If you already have the highest value, nothings happens:

> say True.succ; # -> True
> say False.succ; # -> True
> Inf.succ; # -> Inf

7.11. pred
pred (Predecessor) used on a number gives us the number decremented by one.

> say pi.pred; # -> 2.141592653589793
> say 100.pred; # -> 99

Used on strings:

108

> say 'ab'.pred; # -> aa
> say 'ba'.pred; # -> ax
> say 'β'.pred; # -> α
> say 'b0'.pred; # -> a9

If there are no dots (periods or .) in the string, the last alphanumeric sequence is decremented. If
there are one or more dots, the last alphanumeric sequence before the first dot is decremented.

> say 'b.a.a.a.a'.pred; # -> a.a.a.a.a
> say 'img002.png'.pred; # -> img001.png
> say 'img000.png'.pred; # -> imf999.png

But it does not decrease the number of characters:

> say 'aaaa'.pred; # -> Decrement out of range ...
> say '100'.pred; # -> 099

(This differs from succ, that adds another character when necessary.)

If you already have the lowest value, you either get an errer (as above) or the same value:

> say False.pred; # -> False
> say "a".pred; # -> Decrement out of range ...
> say -Inf.pred; # -> -Inf

7.12. Quoting
We described single and double quotes in section 2.7.1, “Strings”, but we have many more quoting
constructs:

Short String Result Description

single quote 'ABC$a' ABC$a Nothing is interpolated

Q Q#ABC$a# ABC$a Nothing is interpolated

Q{ABC$a} ABC$a Nothing is interpolated. Note the start
and end characters

q q*ABC$a* ABC$a Nothing is interpolated. Note the start
and end characters

q:c q:c/ABC$aX{$a}/ ABC12$aX12 Only closures are interpolated

double quote "ABC$a {$a}" ABC12 12 Variables and closures are
interpolated

qq qq/ABC$a {$a}/" ABC12 12 Variables and closures are
interpolated

109

qw Quote Words; see section 7.12.1, “qw
(Quote Words)”

qqw Quote Words (with interpolation); see
section 7.12.2, “qqw (Quote Words
with interpolation)”

qx Execute program; see the «Advanced
Raku» course

qqx Execute program (with interpolation);
see the «Advanced Raku» course

(Given that we have specified my $a = 12 somewhere.)

A closure is a thingy specified inside curlies.

7.12.1. qw (Quote Words)

This is the same as applying words on a single quoted string:

> say '1 $aaaaa 17'.words; # -> (1 $aaaaa 17)
> say qw/1 $aaaaa 17/; # -> (1 $aaaaa 17)

7.12.2. qqw (Quote Words with interpolation)

This is the same as applying words on a double quoted string:

> my $aaaaa = "X";
> say "1 $aaaaa 17"words; # -> (1 X 17)
> say qqw/1 $aaaaa 17/; # -> (1 X 17)

7.13. Multi-line Strings (Heredocs)
Printing a mulit-line string isn’t very nice looking, especially if we need embedded newlines:

> print "Line 1\nLine2\nline3\n";
Line 1
Line2
line3

A much more convenient way is a heredoc:

110

say q:to/END/;
Here is
some multi-line
string
END

The contents of the heredoc always begin on the next line. The end can be any literal string, as long
as we specify it up front:

say q:to/BLAH/;
Here is
some multi-line
string
BLAH

If the terminator («END» in our case) is indented, that amount of indention is removed from the
string literals.

This heredoc;

say q:to/END/;
 Here is
 some multi line
 string
 END

produces this output:

Here is
some multi line
 string

7.13.1. Interpolation in heredocs

Nothing gets interpolated in the heredocs described avbove. But we can use the q, q:c and qq
quoting mechanisms described in section 7.12, “Quoting”:

Start Interpolates Content Result

q:to/END/; nothing $name and {$age}. $name and {$age}.

q:to:c/EOF/; closures only (variables in curlies {}) $name and {$age}. $name and 15.

qq:to/EOF/; closures and variables $name and {$age}. Tom and 15.

(Where we have declared this: my $name = "Tom"; my $age = 15;.)

111

7.13.2. indent

The indent method is used internally by heredocs to manage the indentation, but it can be used
directly (on strings only):

> "abc";
abc

> "abc".indent: 2;
 abc

> "abc".indent(3);
 abc

> "abc".indent: 10;
 abc

112

Chapter 8. Arrays and Lists
Arrays are mutable, and lists are immutable.

Arrays are created and are shown (on output) by square brackets, and lists are shown with parens:

> say [1,2,4,5].WHAT; # -> (Array)
> say (1,2,4,5).WHAT; 3 -> (List)

Assigning a list to an array variable converts it to an array:

> my @something = (1,2,4,5); # -> [1 2 4 5]
> say @something.WHAT; # -> (Array)

The difference (and distinction) isn’t that important, except when it comes to lazy lists. There is no
such thing as a lazy array, so assigning a lazy list to an array forces it to be evaluated.

It is possible to assign a list to a scalar variable:

> my $something = (1,2,4,5); # -> (1 2 4 5)
> say $something.WHAT; # -> (List)

Assigning a list to a scalar variable keeps list type. That means that the variable is
read-only:

> $something[2] = 99;
Cannot modify an immutable List ((1 2 4 5))

8.1. , (List Operator)
Use the , (comma) list operator to generate a list:

> "rune", "helge", "tom", "jerry";
(rune helge tom jerry)

Add parens, if it makes you feel better… (The parens are only a Grouping Operator; see 2.12.1, “()
(Grouping Operator)”).

> ("rune", "helge", "tom", "jerry");
(rune helge tom jerry)

Strings must be quoted, as shown above, but we can use a short form if the values do not contain

113

spaces:

> <rune helge tom jerry>;
(rune helge tom jerry)

Note that e.g. say can take a list. It will then print all the list values glued together:

say "ABC" ~ "123" # -> ABC123
say "ABC, "123" # -> ABC123

8.2. [] (Array Constructor)
Use the [and] Array Constructor to make an explicit Array:

> [1, 2, 3, 4].WHAT
(Array)

Note that assigning something to an array variable (the @ sigil) coerces it to an array:

> my @a = <rune helge tom jerry>; # -> [rune helge tom jerry]
> say @a.WHAT; # -> (Array)
> say <rune helge tom jerry>.WHAT; # -> (List)

Be careful with precedence. This works, as the binding operator := has lower precedence than the
list operator ,:

> my $a := 1, 2, 3; # -> (1 2 3)
> say $a.WHAT; # -> (List)
> say $a; # -> (1 2 3)

But doing it with the assignment operator doesn’t work:

> my $a = 1, 2, 3; # -> (1 2 3)
> say $a.WHAT; # -> (Int)
> say $a; # -> 1

The first value is assigned to $a, and returned. Then we attach 2 and 3 to that value to form a list
(which is returned, and printed by REPL). But that list isn’t assigned to a variable, and is lost.

The solution, use the array constructor [] or the grouping operator ():

114

> my $a = [1, 2, 3]; # -> [1 2 3]
> say $a.WHAT; # -> (Array)

> my $b = (1, 2, 3); # -> (1 2 3)
> say $b.WHAT; # -> (List)

Lists are read only, so $b is essentially constant:

> $a[1] = 4; # -> 4
> say $a; # -> [1 4 3]
> $b[1] = 4;
Cannot modify an immutable List ((1 2 3))
 in block <unit> at <unknown file> line 1

It works for arrays:

> my @a = 1, 2, 3; # -> [1 2 3]
> say @a; # -> [1 2 3]

8.3. <xxx> (Quote Word)
This is the Quote Word syntax. Specify a string like that, and it is converted to a list of partial
strings, with space (and space like characters) as delimiters.

> my @a = <Peter Paul Mary>; # -> [Peter Paul Mary]
> say @a.perl; # -> ["Peter", "Paul", "Mary"]

8.4. Empty
Use Empty to get an empty list.

All these are equal:

my @a; # No values.
my @b = (); # Explicit
my @c = Empty; # Also possible

8.5. List Elements
You can access an individual item by its index:

115

> say ("a" .. "z")[25]; # -> z

> my @d = <helge tom barry>; say @d[0]; # And NOT $d[0] as in perl5!
helge

This works even if we have used scalar assignment:

> my $a = [1, 2, 3, 4]; say $a[2]; # -> 3
> my $b = (1, 2, 3, 4); say $b[2]; # -> 3

8.6. pop / push / shift / unshift
We have some operators that add or remove values from a list:

Function Description

pop Remove one element from the end

push Add the element(s) at the end

shift Remove one element from the beginning

unshift Add the element(s) at the beginning

Initial array:
my @a = <11 22 33 44 55>; 11

0

22
1

33
2

44
3

55
4

Removing one element (55) from the end:
@a.pop; # -> 55 11

0

22
1

33
2

44
3

Adding one element at the end:
@a.push(66); 11

0

22
1

33
2

44
3

66
4

Removing one element (11) from the start:
@a.shift; # -> 11 22

0

33
1

44
2

66
3

Adding one element at the start:
@a.unshift(77); 77

0

22
1

33
2

44
3

66
4

We can add more than one element at the same time with push and unshift, shown here for push:

Initial array:
my @a = <11 22 33 44>; 11

0

22
1

33
2

44
3

116

Adding two elements at the end:
@a.push(55, 66); 11

0

22
1

33
2

44
3

55
4

66
5

Note that pop and shift will only remove one item at a time.

8.6.1. elems (List Size)

Use elems to get the number of elements in a list:

> my $number-of-elements = @d.elems;
> my $number-of-elements = elems @d;

The value is read only, and cannot be used to change the number of elements.

 There is no «length» method or function.

We can also get the number of elements by evaluating the list in numeric context:

> say +("a" .. "z"); # -> 26

end

Use end to get the index of the last element in a list:

> say ("a" .. "z").end; # -> 25

The value is 1 less than the value retured by elems (as the first element has index, or offset, 0).

It gives -1 for an empty array:

my @a; say @a.end; # -> -1

117

Note that the number of elements in a list really is the last defined element in it:

> my @a;
> say @a.elems; # -> 0
> say @a.end; # -> -1

> my @b = (1);
> say @b.elems; # -> 1
> say @b.end; # -> 0

> @b[10] = 's';
> say @a.elems; # -> 10
> say @a.end; # -> 11

So what can we use them to?

8.6.2. Stack

A stack is a data structure that is easy to implement and does not have much overhead and that is
why it is used a lot in low level programming. The last element added to the stack is the first
retrieved.

Use unshift and pop to make a stack:

my @stack = ...;

@stack.unshift($customer-id); # Add one element to the stack

my $current = @stack.pop; # Get one element from the stack

8.6.3. Queue

A queue is a data structure where the entries are returned in the order they were added. This is
how you generally would treat waiting customers.

Use push and shift to make a queue:

my @queue = ...;

@queue.push($customer-id); # Add one element to the queue

my $current = @queue.shift; # Get one element from the queue

118

8.7. rotate (List Rotation)
List rotations can be done with push/shift (to the left) and unshift/pop (to the right), but it is easier
to use the built in rotate:

(1,2,3,4,5,6).rotate; # Left. The same as rotate(1)
(2 3 4 5 6 1)

> (1,2,3,4,5,6).rotate(2)
(3 4 5 6 1 2)

> (1,2,3,4,5,6).rotate(-2) # Right
(5 6 1 2 3 4)

 Note that rotate doesn’t change the original list, but returns a modified version.

8.8. List of Lists
Raku does not automatically flatten lists (as opposed to Perl 5), so the result of adding (with push or
unshift) a list on to a list, is a list with one more item - the second list:

Initial array:
my @a = <11 22 33 44> 11

0

22
1

33
2

44
3

Adding an array with two elements at the end:
my @b = <55 66>; @a.push(@b) 11

0

22
1

33
2

44
3

(55, 66)
4

Probably not what you have in mind.

8.9. Flattening Lists
If you want to insert the individual values of a second list to a list, use prepend (instead of unshift
and append (instead of push):

119

> my @list1 = 1,2,3,4,5;
[1 2 3 4 5]

> my @list2 = 8,9;
[8 9]

> @list1.append(@list2); # push the individual values
[1 2 3 4 5 8 9]

> @list1.prepend(@list2); # unshift the individual values
[8 9 1 2 3 4 5 8 9]

We can add more than one element at the same time with append and prepend, shown here for
append:

Initial array:
my @a = <11 22 33 44>; 11

0

22
1

33
2

44
3

Adding two elements at the end:
my @b = <55 66>; @a.append(@b); 11

0

22
1

33
2

44
3

55
4

66
5

8.10. Array Slice
We can access several items (called an array slice):

> my @a = 1,2,3,4,5,6,7,8,9,10,11,12,13;
> @a[0 .. 9]; # The same as [0,1,2,3,4,5,6,7,8,9]
(1 2 3 4 5 6 7 8 9 10)

They do not need to be consecutive:

> say @a[0,9,2]; # - > (1 10 3)

Array slices are writeable, i.e. we can assign values to them:

> my @a = <10 9 8 7 6 5 4 3 2 1 0>;

> say @a[2,4,6,8,10,0]; # -> (8 6 4 2 0 10)
> say @a[2,4,6,8,10,0].=sort; # -> (0 2 4 6 8 10)
> say @a; # -> [10 9 0 7 2 5 4 3 6 1 8]

We started with a list with the numbers from 10 down to 0. Then we picked some of them, giving a
new list of values. We then sorted that list, and assigned the sorted list back (with the .= form of the

120

assignment operator =). And finally we show the result.

Another example (with an illustration that may help):

> my @array = 10, 4, 1, 8, 12, 3;
> my @indeces = 0, 2, 5;
> my @values = @array[@indeces]; # -> (10 1 3)
> my @sorted = @values.sort; # -> (1 3 10)

> @array[indeces] = @sorted; # -> (1 3 10)

> say @array; # -> [1 4 3 8 12 10]

10 4

@indeces 0

@sorted = 1 3 10

1 8 12 3

2 5

10 1 3
@values =

@array

1 4 3 8 12 10

@array(@indeces)

@values.sort

@array[@indeces] = @sorted

We can write the code more compact:

> my @array = 10, 4, 1, 8, 12, 3;
> @array[0,2,5].= sort;
> say @array;
[1 4 3 8 12 10]

Trying to remove values doesn’t quite work out:

> my @a = 1..10; # -> [1 2 3 4 5 6 7 8 9 10]
> @a[2,4,5] = (); # -> ((Any) (Any) (Any))
> say @a; # -> [1 2 (Any) 4 (Any) (Any) 7 8 9 10]

But we can use splice, which we’ll cover in the next section.

8.11. splice
Use splice to remove some elements from a list. The removed elemens are returned.

121

We can remove from the given index to the end like this:

> @a.splice(5); # Leave the first 5 items, and remove the rest.

We can specify the number of items to remove:

> @a.splice(5,2); # Leave the first 5 items, remove the next 2, and leave the rest as
well.

We can insert another list in place of the elemens we removed:

> @a.splice(5,2, @list); # Leave the first 5 items, remove the next 2 and replace
 # with `@list`, and leave the rest as well.

Note that the size of the replacement list doesn’t have to be the same as the number of removed
items.

The replacement values can be specified as scalars as well.

Summary:

code value of @a value of @b

my @a = "a" .. "n" [a b c d e f g h i j k l m n]

my @b = @a.splice(5) [a b c d e] [f g h i j k l m n]

my @b = @a.splice(5,2) [a b c d e h i j k l m n] [f g]

my @b = @a.splice(5,2, <A B C>) [a b c d e A B C h i j k l m n] [f g]

my @b = @a.splice(5,2, 9,9,9,9) [a b c d e 9 9 9 9 h i j k l m n] [f g]

Note that we have to reset «@a» to the initial value before each splice.

It is possible to use splice to insert a new value (or several) in a list, whithout
removing anything, by specifying 0 as the second argument:

> my @b = @a.splice(10, 0, 3.14);
[]

> say @a;
[a b c d e f g h i j 3.14 k l m n]

8.11.1. | (Flattening Operator)

We can flatten a list, by adding a | (vertical bar) before it:

122

> my @list1 = 1,2,3,4,5;
[1 2 3 4 5]

> my @list2 = 8,9;
[8 9]

> @list1.push(@list2);
[1 2 3 4 5 [8 9]]

> @list1.push(|@list2); # push the individual values, and not the list
[1 2 3 4 5 8 9]

Note that the flattening is performed on the top level only (not recursively).

8.11.2. flat

Or use the more verbose (and explicit) flat method:

> (1, (2, (3, 4)), 5).flat;
(1 2 3 4 5)

The flattening doesn’t flatten arrays recursively, only lists (as shown above):

> my @a = (1,2); # -> [1 2]
> my @b = (1, 2, @a, 1, 2); # -> [1 2 [1 2] 1 2]
> @b.flat; # -> (1 2 [1 2] 1 2)

We can force it to flatten arrays with a hyper operator

> @b».List.flat; # Unicode version
> @b>>.List.flat; # Ascii version

Hyper Operators will be covered in the «Advanced Raku» course.

8.12. map
Use map to apply a bit of code to every element in a list. It leaves the original list unchanged, and
returns the modified version:

> my @a = 1..10; # -> [1 2 3 4 5 6 7 8 9 10]
> @a.map({ $^a + 1 }); # -> (2 3 4 5 6 7 8 9 10 11)

We use curlies to pass a code block. This block is executed for each value, and the result is placed in

123

the resulting list.

Note that map only cares about the top level of the list it is used on. See deepmap (in
section 8.12.4, “deepmap”) for details.

8.12.1. Placeholder Variables

The twigil (see section 2.2.2, “Twigils”) ^ indicates that it is a placeholder variable. It can be named
whatever you want, as long as the twigil is there.

We use the placeholder variable $^a to indicate the current value, in the same way that we use the
topic variable (ref) $_ in loops.

Exercise 8.1

What is the result of this:

> (1 .. 10).map({ $^a + $^b });

See Chapter 10, Procedures and section 10.4, “Placeholder Variables” for a more detailed description
of Placeholder Variables.

8.12.2. Block Code

We can pass any block of code as parameter. The topic variable holds the current value:

> @a.map({ .sqrt });

Note that map is lazy, so the values are not evaluated until they are needed.

8.12.3. * (Whatever Star)

We can use a Whatever Star and skip the block if we just need a single method call:

> (1..10).map(*.sqrt);
(1 1.4142135623730951 1.7320508075688772 2 2.23606797749979)

We can have simple expressions as well:

> (1..10).map(* + 1); # -> (2 3 4 5 6 7 8 9 10 11)

Note that curlies are illegal when we use a Whatever Star.

124

And we can negate the expression (so the Whatever Star doesn’t have to be the first character in the
expression):

> say (1 .. 25).grep(! *.is-prime);

grep is described in section 8.20.1, “grep”. It selects the values that passes the condition.

8.12.4. deepmap

Use deepmap to apply the code to every element in the list, and not only on the top level as done by
map.

They differende between map and deepmap can be summarised like this:

> my @a = ((1,2),(3,(4,5)));

> @a.map(* +1); # -> (3 3)
> @a.deepmap(* +1); # -> [(2 3) (4 (5 6))]

deepmap traverse the structure recursively, adding one to every element.

map sees the first level only, and that is a first a list with two items (1 and 2) followed by another list
also with two items (3 and a new list (with the items 4 and 5)). The +1 coerces the value to Numeric,
and the Numeric value of a list is the size. So we get 2 as it has 2 items. The next list also has two
items (a value and a new list), so another 2. The +1 gives the end result (3,3).

There are also flatmap (deprecated), nodemap and duckmap. See the «Advanced Raku» course for
details.

8.13. sort
Use sort to sort a list. It is type aware, so it will sort numerically when given numbers, and as
strings when given strings.

> (1, 2, 11, 0, 3, -1).sort; # -> (-1 0 1 2 3 11)

If you mix numbers and strings you will get funny results:

> (1, 2, 11, 0, "3", -1).sort; # -> (-1 0 1 2 11 3)

When we sort strings, it uses the character order in the unicode specification, which is the same
order as «isolatin» and «ascii» for english letters (A-Z and a-z). So the upper case letters come before
all the lower case ones.

If we have a list of words, some with an initial uppercase letter and some not, we will get the

125

uppercase words before the lowercase ones.

We can tell sort how to sort by giving it a custom comparison code block:

@words.sort({ $^a.fc cmp $^b.fc });

We apply fc (foldcase; see section 7.8.5, “fc (Fold Case)”) to convert all the strings to a caseless
version before comparing them.

The inside of the block specifies how to campare any two elements when the compiler does the
sorting; $^a is the first, and $^b is the second. We use these two placeholder variable names (as a
single * Whatever Star wouldn’t work), and they can be used several times in the expression if
required.

cmp (see section 3.7.1, “cmp”) is the three way comparison operator, and it does the job for us (or
rather, for sort).

The curly braces are required when we specify the comparison code inline. It is
possible to specify a reference to a procedure doing the job for us like this:

.sort(&compare-elements)

Do this if the computation has more code than the simple example above.

Note the & sigil. It tells the compiler to pass a reference to the code. If we skip it, the
procedure is executed right away.

See Chapter 10, Procedures for an introduction to procedures.

There is a collation aware version of sort called collate. See the «Advanced Raku»
course for details.

8.14. reverse
We can reverse a list with the reverse method:

> my @num1 = 1 .. 10;
[1 2 3 4 5 6 7 8 9 10]

> my @num2 = @num1.reverse
[10 9 8 7 6 5 4 3 2 1]

We have just used reverse to generate a downward counting Range, but this is
really something we should use a Sequence to. We’ll discuss them in Chapter 16,
Ranges and Sequences.

126

We could have sorted the list:

my @num3 = @num1.sort({$^b.fc <=> $^a.fc});

8.14.1. Swapping two variables

Swapping two variables in a «normal» programming language requires a temporary variable:

my $a = 1;
my $b = 2;

my $tmp = $a; $a = $b; $b = $tmp;

We can do it with a list assignment:

($a, $b) = ($b, $a);

Or with reverse:

($a, $b) .= reverse;

8.15. Array with Limits
We can specify a size limit for an array:

> my @d[10] = <rune helge tom jerry>;
[rune helge tom jerry]

> my @d[3] = <rune helge tom jerry>;
Index 3 for dimension 1 out of range (must be 0..2)

 Note that the limit is the number of items, and not the index of the last one.

8.16. Typed Array
We can add a type constraint on the values of an array, as described in section 3.1, “Strong Typing”:

> my Int @values;
> my @values of Int;

Use of to get the type constraint:

127

> my Int @values; say @values.of; # -> (Int)
> my @values; say @values.of; # -> (Mu)

8.17. Shaped Array
A shaped array is an array with more than one dimension.

We access an individal cell in a shaped array like this;

> my @a; @a[1;2;3] = 2;
> my @a; @a[1][2][3] = 2; # The same

We can access a "row" like this:

> @a[1;2;*]; # -> ((Any) (Any) (Any) 2) ## List
> @a[1][2]; # -> [(Any) (Any) (Any) 2] ## Array

Not the subtle difference in the types.

And the whole array:

> @a; # -> [(Any) [(Any) (Any) [(Any) (Any) (Any) 2]]]

8.17.1. Sized Shaped Arrays

We can limit the size of shaped arrays as well:

> my @a[3;3;3];
> @a[3;3;3] = 12
Index 3 for dimension 3 out of range (must be 0..2)
 in block <unit> at <unknown file> line 1

Normal index rules apply, so the first item has index (offset) 0.

We can assign a shaped array with a list of lists:

> my @a[3;3] = ((1,2,3), (4,5,6), (7,8,9))
[[1 2 3] [4 5 6] [7 8 9]]

8.17.2. shape

Returns the shape of the array as a list. Note that this works when we have given the array an
explicit shape only.

128

my @foo[2;3] = (< 1 2 3 >, < 4 5 6 >); # Array with fixed dimensions
say @foo.shape; # -> (2 3)
my @bar = (< 1 2 3 >, < 4 5 6 >); # Normal array (of arrays)
say @bar.shape; # -> (*)

8.17.3. Shaped Arrays Usage

A Shaped Array can be used like a matrix. There are no built-in operators working with matrices, so
a module like «Math::Matrix» is a safer bet.

8.18. unique (Lists Without Duplicates)
Use unique to get a copy of the list, without duplicates:

> (1,1,2,3,4,5,1,6).unique
(1 2 3 4 5 6)

If you know that the list is sorted, use squish instead of unique:

> (1,1,2,3,4,5,5,6).squish # OK
(1 2 3 4 5 6)

> (1,1,2,3,4,5,1,6).squish # Wrong usage.
(1 2 3 4 5 1 6)

8.18.1. repeated

The repeated method does the opposite of unique as it only returns duplicates:

> (1, 2, 1, 2, 3,4,5,6,1).repeated;
(1 2 1)

They will occur once for each time they are duplicated, and the list is not sorted. We can fix
duplicates and sort it as well:

> (1, 2, 1, 2, 3,4,5,6,1).repeated.sort.squish;
(1 2)

8.19. xx (List Repetition Operator)
Use xx to repeat the list or value on the left hand side the number of times given on the right hand
side:

129

> "abc" xx 3
(abc abc abc)

> "abc " xx 2
(abc abc)
>

The number must be an integer, or something that can be coerced to an integer. Zero or negative
integers will return an empty string:

> "abc" xx 0; # -> ()
> my $a = (True, False) xx 3; # -> ((True False) (True False) (True False))
> my $b = |(True, False) xx 3; # -> (True False True False True False)

We can generate an infinite list by specifying a * (a «Whatever Star») on the right hand side:

> my $c = |(True, False) xx *

See section 16.3.6, “List Repetition Operator and Sequences” for a use case.

Note the similarity to the Sting Repetition Operator x (as described in section 7.9,
“x (String Repetition Operator)”

8.20. List Selection
Use map to apply changes to all the values, and grep to select some of the values.

grep returns a list. If you only need the first value, use first instead. (See section 8.20.2, “first”.)

If you are only interested in the fact that there is at least one match, any (which is not the same as
Any, described in section 3.4.1, “Nil & Any”) may be useful). See the «Advanced Raku» course for
details.

8.20.1. grep

Use grep to select some values from a list.

Integers not divisible by 3:

> say (1 .. 25).grep(* % 3);
(1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25)

Non-prime numbers only:

130

> say (1 .. 25).grep(! *.is-prime);
(1 4 6 8 9 10 12 14 15 16 18 20 21 22 24 25)

Integers only:

> say (1, 1.5, 2, 2.5, 3, 3.5, 4).grep(Int);
(1 2 3 4)

Exercise 8.2

Get all the two digit primes, and count them.

Tip: Use grep and is-prime (see section 5.12, “is-prime (Prime Numbers)”).

8.20.2. first

The first method (and function) is like grep, except it only returns the first match. Use this if you
only require a single match, as it will be faster.

The first prime number after (and including) 1000:

> say (1000 .. Inf).first(*.is-prime);
1009

It returns Nil if no matches were found:

> say (0.1 .. 0.9).first(*.is-prime);
Nil

There is no separate «last» method, but use the optional named parameter :end to
indicate that the search should be from the end of the list, rather than from the
start.

The highest prime number lower than 1000:

> say (1 ..^ 1000).first(:end, *.is-prime);
997

8.20.3. head

Returns the specified number of items from the beginning of the list. It defaults to 1 if the size isn’t

131

specified:

> (1 .. Inf).head
1

> (-1 .. Inf).head(2)
(-1 0)

> <a b c d 12>.head
a

8.20.4. tail

Returns the specified number of items from the end of the list. It defaults to 1 if the size isn’t
specified:

> <a b c d 12>.tail
12

Don’t use tail on an infinite list:

> (-Inf .. Inf).tail
Cannot tail a lazy list
 in block <unit> at <unknown file> line 1

But head works (surprisingly, I would say):

> (-Inf .. Inf).head
-Inf

8.21. min / max
min returns the smallest and max the largest value in the list.

With numbers:

> (1 .. 10).min; # -> 1
> max 1 .. 10; # -> 10
> (1 .. *).max; # -> Inf

With strings:

132

> <aa a abc d f ff e>.min; # -> a
> <aa a abc d f ff e>.max; # -> ff

They can also be used as infix operators, and can be stacked:

> say 8 min 10; # -> 8
> say 8 min 10 min 2 min 99 min -19; # -> -19

Undefined values are ignored, so the following works:

> say (5, Nil, 100, 2).min; # -> 2

8.22. Random Values
Random values are important, and they are extremely difficult to implement. Most programming
languages settle for pseudo-random numbers, something that looks random but really isn’t. Raku is
no exception. This is good enough, unless you need real randomness for cryptography.

8.22.1. rand

rand as a function gives a pseudo-random number (of type Num) between zero (inclusive) and 1 (non-
inclusive):

> rand; # -> 0.4214056307236411
> rand; # -> 0.7753853239550014

When used as a method on a value, it returns a pseudo-random number (of type Num) between zero
(inclusive) and the given value (non-inclusive):

> 100.rand; # -> 51.322528184845

Exercise 8.3

Write code that chooses a random integer between 10 and 99, both included.

8.22.2. pick

Random values are often used as indexes to lists. Raku has a routine pick that can be used on a list
(or a range) to get a random element from it:

133

> @colours.pick; # From an array
> (10 .. 99).pick; # From a range

If the value is meant as an array index, use pick on the array directly:

> ("red", "blue", "green", "yellow").pick

We can ask for more values at the same time:

> (10 .. 99).pick(10);

This gives 10 randomly selected values from the range, without repetition.

If you want more than one value, just ask:

> ("red", "blue", "green", "yellow").pick(2);
(red yellow)

This pick call will not repeat the values.

If you ask for more values than it can give, it will give as much as it can (without complaining):

> ("red", "blue", "green", "yellow").pick(9);
(green yellow red blue)

If you want them all, use this syntax to make it obvious:

> <red blue green yellow>pick(*);
(green yellow blue red)

This is a handy way of sorting a list in a random order.

Exercise 8.4

Write a piece of code (in REPL) that returns a random prime number between 1 and a specified
number.

Use 100 and 1000 as the limit.

134

pick With Repetition

Repetition is possible, by applying a loop:

> say (1 .. 6).pick for ^3
5
2
5

This can be used to roll a dice a number of times.

A little trickery to get them on one line:

> (1 .. 6).pick.fmt("%d ").print for ^10; say "";
1 5 3 6 2 1 5 6 2 1

> say join(" ", ((1 .. 6).pick for ^10));
5 4 3 6 4 4 4 5 6 2

Or we could have used the List Repetition Operator xx (see section 8.19, “xx (List Repetition
Operator)”):

> say (1 .. 6).pick xx 10
(6 5 5 4 4 6 6 2 4 2)

> say (1 .. 6).pick xx 10
(6 3 3 6 6 5 5 4 5 2)

8.22.3. roll

roll is meant to remind you of the roll of a dice. It behaves the same way as pick, except that it can
repeat the values:

> (1..6).roll(3); # -> (1 4 6)
> (1..6).roll(3); # -> (1 2 6)
> (1..6).roll(3); # -> (3 3 6)

The count defaults to 1:

> (1..6).roll; # -> 6

We can get an infinite lazy sequence if we pass * as count:

> (1..6).roll(*); # -> (3 3 6 ...)

135

We can use it on Boolean values, either on a list or the type object:

> (True, False).roll; # -> True
> Bool.roll; # -> True

We can cheat as well:

> (True, True, False, False, False,).roll; # -> True

Exercise 8.5

Generate a random string of ten characters usable as a password. Use letters, digits, and some
special characters (as e.g. «!» and «@»).

Exercise 8.6

We can check the quality of the random number generator, that the distribution is even.

Write a program that picks 1 million random numbers in the range 1..100, and prints a frequency
table.

Also display the minimum and maximum count.

8.22.4. srand

Random numbers are not really random. Raku has a sequence of pseudo random numbers, and the
randomness lies in the fact that the compiler starts at a different location in this sequence each
time it runs a program, by caling srand.

We can mess up this by calling srand ourself:

> srand(1234567890); say rand; say rand;
0.9168008342654074
0.297372052451493

> srand(1234567890); say rand; say rand;
0.9168008342654074
0.297372052451493

Reset again, and it starts at the same place.

136

Note that the actual values may differ, depending on the Operating System and version of the
compiler, but you will get the same seqence each time.

Call srand with another integer value, and you’ll get another sequence.

> srand(112); (1 .. 6).pick.fmt("%d ").print for ^10; say "";
6 1 4 6 6 4 5 4 6 3
> srand(112); (1 .. 6).pick.fmt("%d ").print for ^10; say "";
6 1 4 6 6 4 5 4 6 3

srand affects pick as well:

> srand(1); (1..10).pick; # -> 4
> srand(1); (1..10).pick; # -> 4
> srand(1); (1..10).pick; # -> 4

8.23. permutations
Use permutations to get all possible permutations of a list:

> say <a b c>.permutations;
((a b c) (a c b) (b a c) (b c a) (c a b) (c b a))

It cares about the positions, not the actual values. So duplicate values will result in duplicates in the
permutations:

> .say for <a b b>.permutations;
(a b b)
(a b b)
(b a b)
(b b a)
(b a b)
(b b a)

If used as a function with a numeric value, it will treat that value as a range. E.g. permutations 3 is
the same as permutations ^3 (which is the same as permutations 0..2)

> say permutations 3;
((0 1 2) (0 2 1) (1 0 2) (1 2 0) (2 0 1) (2 1 0))

137

Exercise 8.7

Write a program that removes duplicates from the output of permutations.

> say <a b b>.permutations-without-duplicates; # Doesn't exist.
((a b b) (b a b) (b b a))

8.24. combinations
Use combinations to get all the possible combinations of zero and more elements from the list:

> say <a b c>.combinations;
(() (a) (b) (c) (a b) (a c) (b c) (a b c))

Duplicate values in the input list is allowed, and will result in duplicates in the result:

> <a b b>.combinations
(() (a) (b) (b) (a b) (a b) (b b) (a b b))

This is beacause combinations uses the positions, and not the actual values.

We can specify that we only want the combinations with a given number of elemens:

> <a b c>.combinations(1)
((a) (b) (c))

We can specify a range to select the length:

 <a b c>.combinations(1..3)
((a) (b) (c) (a b) (a c) (b c) (a b c))

As a function we give it the number of items as argument. E.g. 3 will result in the list 0..2:

> combinations 3
(() (0) (1) (2) (0 1) (0 2) (1 2) (0 1 2))

We can add the number of elements to select as well, either as a value or a range:

> combinations 3,1; # -> ((0) (1) (2))
> combinations 3,2; # -> ((0 1) (0 2) (1 2))
> combinations 3,1..2; # -> ((0) (1) (2) (0 1) (0 2) (1 2))

138

8.25. but (Array)
We introduced the but operator in section 3.8, “but (True and False, but …)”, and showed how it
works on scalar values.

It does not work on arrays (@):

> my @a = <54 12> but False; # -> [54 12]
> say @a.WHAT; # -> (Array)

But (pun intended) it does work if we assign to a scalar:

> my $a = <54 12> but False; # -> (54 12)
> say $a.WHAT; # -> (List+{<anon|5>})
> say $a[0].WHAT: # -> (IntStr)
> say $a[1].WHAT; # -> (IntStr)
> say so $a; # -> False

> my $b = [54, 12] does False; # -> [54 12]
> say $a.WHAT; # -> (Array+{<anon|4>})

It works on the entire list, on not on the individual elemens.

8.25.1. does (Array)

This applies to the does operator as well.

Se section 3.8.1, “does” for an introduction.

139

140

Chapter 9. Pair and Hashes
Hashes consist of pairs of keys and values.

Before looking at hashes, we’ll take a look at the Pair type.

9.1. Pair
Hashes (as well as some other types which we will look into in the «Advanced Raku» course) consist
of pairs of keys and values. The Pair is a built in type, and it is a combination of a single key and
value. They can operate alone (a single Pair), but are generally more useful in larger numbers.

9.1.1. => (Pair Constructor)

We can construct a Pair with the Pair constructor =>. We can use Pair, but don’t have to:

> Pair(1 => 2).WHAT
(Pair)

> (1 => 2).WHAT # The same, but shorter
(Pair)

> Pair.new(1, 2).WHAT # Without the "fat arrow"
(Pair)

Note that unquoted text is allowed as a key, as long as it doesn’t contain spaces:

> my $a = (pi => pi);
pi => 3.141592653589793

The first «pi» is taken as the a literal text, and the second one is taken as the built
in pi constant.

We can construct a Pair in several ways:

Pair('key' => 'value') As shown above

('key' => 'value') ditto

Pair.new('key', 'value') ditto. This is the canonical way

'key' => 'value' No need for parens

:key<value> The same

:foo(127) Short for foo => 127

:127foo The same as foo => 127. Works when the value is
a number.

141

If the value is a boolean value we can shorten the expression:

:key The same as key => True

:!key The same as key => False

We can turn any variable into a Pair, with the variable name as the key:

> my $age = 14;
> my $p = :$age;
> say $p; # -> age => 10

9.1.2. key

Use key to get the key value (the left side of the fat arrow) of a Pair:

> my $a = (1 => 2); # -> 1 => 2
> $a.key; # -> 1

9.1.3. value

Use value to get the value (the right side of the fat arrow) of a Pair:

> $a.value; # -> 2

9.1.4. antipair

Use antipair to swap the key and value of a Pair:

> ("a" => "r").antipair; # -> r => a

9.2. Hash
A hash is a collection if Pair objects (zero, one or more), where we use the key as index (lookup).

We can give a hash values when we declare it like this:

> my %trans = ("a" => "1", "b" => "9");

> my %population = (Oslo => 500_000,
 Paris => "unknown",
 "Buenos Aires" => "too many");

The keys (the left hand side of =>) can be specified without quotes - if they do not contain spaces.

142

We can skip the parens.

We can populate a hash with a list. It will take the first value as key, the second as the value and so
on:

> my %a = (11 .. 20)
{11 => 12, 13 => 14, 15 => 16, 17 => 18, 19 => 20}

The number of items in the list must be even:

{11 => 12, 13 => 14, 15 => 16, 17 => 18, 19 => 20}
> my %a = (11 .. 21)
Odd number of elements found where hash initializer expected:
Found 11 (implicit) elements: ...

It is possible to create a hash from two seperate lists, one for the keys and the other for the values:

> my @keys = 1..10;
> my @vals = 91..100;

> my %hash; %hash{@keys} = @vals;

> say %hash;
{1 => 91, 10 => 100, 2 => 92, 3 => 93, 4 => 94, 5 => 95, 6 => 96, 7 => 97, 8 => 98, 9
=> 99}

9.3. Hash Constructor { }
The hash constructor { … } is only required if we assign the hash to a scalar:

> my $trans = {"a" => "1", "b" => "9"};
{a => 1, b => 9}

Note that if we forget the curlies, we get a list of Pairs:

> my $trans = ("a" => "1", "b" => "9");
(a => 1, b => 9)

If we assign something to a hash, it is coerced to Pair objects, and then inserted in the hash:

> my %hash = 1..10; # -> {1 => 2, 3 => 4, 5 => 6, 7 => 8, 9 => 10}

As long as the number of arguments are even:

143

> my %hash = 1..11;
Odd number of elements found where hash initializer expected:
Found 11 (implicit) elements:
Last element seen: 11
 in block <unit> at <unknown file> line 1

We can use other ways of generating a Pair:

my %months = :jan('January'), :feb('February'), ...;

9.4. Hash Assignment and Values
If we assign to the hash variable, any existing values will be lost. We can add new values, or change
the value of an existing one like this:

> %population{"Buenos Aires"} = "too many";
> %population<Oslo> = 500_000;

> %population{"Oslo"}
500000

> %population<Oslo> # The same
500000

> say %population<Buenos Aires> # An error
((Any) (Any))

The last one is the same as:

> say (%population{"Buenos"}, %population{"Aires"});
((Any) (Any))

9.5. keys
The keys method gives (a list of) all the keys:

for %population.keys -> $city
{
 say "City $city has %population{$_} people";
}

144

We can use keys one a list as well, and it will return the indices:

Even if we have populated the list with Pair objects:

(1 => 2, 2 => 3, 4 => 5).keys
(0 1 2)

keys gives the keys in random order. If you want order, sort them:

> for %population.keys.sort -> $city { ... }

The order the keys are returned in is semi random. As long as the hash hasn’t been
changed, this order remains the same (and that means that calling keys and then
values gives the values in the same order.

9.6. values
The values method gives all the values:

for %population.values -> $population
{
 say "Unknown City with %population{$_} people";
}

Note that values on a list of Pair objects returns everything, as it uses the indices as keys:

> (1 => 2, 2 => 3, 4 => 5).values
(1 => 2 2 => 3 4 => 5)

There is no way to start with a hash value and get back to the key, except doing a manual search.
This is the classical «needle in the haystack problem». We’ll have a go at it in section 10.13.4.2, “The
Needle in the Haystack Problem”, when we have learned about procedures.

9.7. kv (keys + values)
We can use the kv method (for key-value) to get both keys and values at the same time:

for %population.kv -> $city, $population
{
 say "City $city has $population people";
}

145

9.8. Typed Hash
We can add a type constraint on the values of a hash, as described in section 3.1, “Strong Typing”:

> my Int %h;
> say %h.WHAT; # -> (Hash[Int])
> %h<a> = 12.1;
Type check failed in assignment to %h; expected Int but got Rat (12.1)

The constraint can also be specified like this:

> my %h of Int;

We can also add type constraint on the keys of a hash:

> my %h{Str};
> say %h.WHAT; # -> (Hash[Any,Str])

We can use both:

> my Int %h{Str};
> say %h.WHAT; # -> (Hash[Int,Str]) # The first is the keys, the second is the values

Now we require that the keys are strings, and the values are integers.

9.8.1. keyof

keyof returns the type constraint for the keys of the invocant.

A hash without a restraint on the keys:

> my %h; say %h.keyof; # -> (Str(Any))

A hash with a restraint on the keys:

> my %h{Int}; say %h.keyof; # -> (Int)

9.8.2. of

of returns the type constraint for the values of the invocant.

A hash without a restraint on the values:

146

> my %h; say %h.of; # -> (Mu)

A hash with a restraint on the values:

> my %h of Str; say %h.of; # -> (Str)

9.9. Shaped Hash
A shaped Hash doesn’t make as much sense as a shaped array (as described in section 8.17, “Shaped
Array”).

We can specify the shape like this:

> my %hash{10;10;10};

The numbers are ignored, but we cannot use more indices than specified (three in this case):

> %hash{"A";"E";"C"} = 1;
> %hash{"A";"E";"C"} = "A"
> %hash{"A";"E"} = "A"
> %hash{"A";"E";"J";"O"} = "A"
Type Str does not support associative indexing.

The error message is a bit confusing though.

Also note that we can assign any value to the hash, and not only integers (as if we had only
specified one integer; e.g. my %hash{10}; - and yes specifying an integer is taken as the same as Int).

The size declaration is pretty useless (except for the upper limit), and can be dropped:

> my %hash;
> %hash{"A"; "B"; "C"} = 12;
> %hash{"A"; "B"; "D"} = 13;

So what actually is a shaped hash? Let us have a look:

> say %hash; # -> {A => {B => {C => 12, D => 13}}}

It is a tree-like structure, a hash of hashes of hashes. (I have kept it simple on purpose.)

147

A B

C

D

12

13

Figure 10. Multihash

We can specify it like this as well:

> my %hash;
> %hash{"A"}{"B"}{"C"} = 12;
> %hash{"A"}{"B"}{"D"} = 13;
> say %hash; # -> {A => {B => {C => 12, D => 13}}}

Note the subtle difference when we address a subtree:

> %hash{"A"; "B"}; # -> ({C => 12, D => 13}) # A list
> %hash{"A"}{"B"}; # -> {C => 12, D => 13} # A hash

9.10. invert
We can use invert to swap the keys and values of a hash:

> my %a = (1 => 2, 3 => 4); # -> {1 => 2, 3 => 4}
> my %b = %a.invert; # -> {2 => 1, 4 => 3}

Duplicates values turn into identical keys, but that is ok:

> my %a = (1 => 2, 3 => 4, 5 => 2); # -> {1 => 2, 3 => 4, 5 => 2}
> say %a.invert; # -> (2 => 1 2 => 5 4 => 3)

We got a list of Pair objects, and the list doesn’t care about duplicates.

Duplicate keys will be squished, when we assign it back to a hash, like this:

> my %b = %a.invert; # -> {2 => 5, 4 => 3}

When we assign a list of Pair objects to a hash, the last one wins when we have duplicate keys.
Which is the last one is anybody’s guess, as a hash is unordered. (That means that you could get
different results each time you run the program, thus getting subtle errors.)

148

9.11. antipairs
This has the same effect as invert on a hash.

But on a list of Pair objects they differ:

> (1 => 2, 2 => 3, 4 => 5).antipairs
((1 => 2) => 0 (2 => 3) => 1 (4 => 5) => 2)

> (1 => 2, 2 => 3, 4 => 5).invert
(2 => 1 3 => 2 5 => 4)

antipairs use the list index as key, and the Pair as value, and swaps them.

9.11.1. pairs

Use pairs to convert the hash to a list of Pair objects:

> my %a = (1=>2, 2=>3); # -> {1 => 2, 2 => 3}
> %a.pairs; # -> (1 => 2 2 => 3)

9.12. Hash Slices
Just as we have array slices (see section 8.10, “Array Slice”), we have hash slices:

> my %translate = (one => "ein", two => "zwei", \
 three => "drei");
{one => ein, three => drei, two => zwei}

> say %translate{"two", "one"}
(zwei ein)

> say %translate<two one> # This does not work on arrays.
(zwei ein)

Use grep if the selection criteria is more complex:

> %translate{%translate.keys.grep(*.chars == 3)}
(zwei ein)

9.13. Hash Lookup
How do we check if a value is present in a hash?

149

> my %h;
> %h<a> = 0; # => 0
> %h = False; # => False
> %h<c> = Nil; # => (Any)

All of them evaluates to False in boolean context.

Use the :exists adverb:

> %h<a>:exists # => True
> %h:exists # => True
> %h<c>:exists # => True
> %h<d>:exists # => False

9.14. Hash Deletion
Use the :delete adverb to delete entries from a hash:

> my %h = a => 1, b => 2, c => 3
{a => 1, b => 2, c => 3}

> %h<b c>:delete
(2 3)

> %h<a>:delete
1

The deleted value or values are returned.

9.15. Hash Duplicate Values
Hashes (obviously) do not allow duplicate values with the same key:

> my %hash;
> %hash<M> = 12;
> %hash<M> = "nobody";
> say %hash<M>
nobody

But we can get around that by using a list as the value, adding new values to it. We can do this
automatically with push:

150

> my %hash;
> %hash<M>.push(12);
> say %hash<M>
[12]

> %hash<M>.push("nobody");
> say %hash<M>
[12 nobody]
> say %hash<M>[1];
nobody

But we must do this from the start, as the first push will remove any scalar value already there:

> my %hash;
> %hash<M> = 12;
> %hash<M>.push("nobody");
> say %hash<M>
[nobody]

9.16. Hash Usage
The first code snippet we showed in this chapter is a hash where we have a mapping between cities
and the size of their population.

We can try to add those values:

my $total = 0;
for %population.values -> $population
{
 $total += $population;
}

This gives a run time error because of the string values ("unknown" and "too many"):

Cannot convert string to number: base-10 number must begin
with valid digits or '.' in '⏏too many' (indicated by ⏏)

9.16.1. The «sum» Method

We can use the sum method instead of looping through the values:

File: population-sum (partial)

my $total = %population.values.sum;

151

And again, this fails because of the non-numeric values.

9.16.2. With Smartmatch

We can check that the value is an Int with the Smartmatch Operator ~~ (which is introduced in
section 11.3, “~~ (Smartmatch Operator)”), before adding it:

File: population-smartmatch (partial)

for %population.values -> $population
{
 $total += $population if $population ~~ Int;
}

We could have used $population.WHAT === Int or $population.isa(INT) (see sections
3.7.7, “===” and 3.7.8, “isa”, with the same result.

All of them works as long as the type is an Int. If it is e.g. Rat, the comparison will
fail - even if the value itself is an integer:

> say 5.0 ~~ Int; # -> False

9.17. Grep and Smartmatch
We can use grep to get rid of illegal values (and the loop), before applying sum:

my $total = %population.values.grep(* ~~ Int).sum;

We’ll get back to this example in the «Advanced Raku» course.

9.18. Hash (method)
We can turn a list into a hash with the Hash method, as long as the number of elements are even:

> my %hash = (1..10).Hash;
{1 => 2, 3 => 4, 5 => 6, 7 => 8, 9 => 10}

152

Exercise 9.1

What happens if we drop the .Hash part?

E.g.

> my %hash = (1..10);

Exercise 9.2

What happens if we have duplicate values?

E.g.

<1 2 1 3 1 4 1 5>.Hash;

9.19. but (Hash)
In section 8.25, “but (Array)” we showed that the but operator does not work on arrays (@), but on
scalar lists/arrays ($).

The same applies to hashes, which doesn’t work:

> my %a = (54 => 12) does False; # -> {54 => 12}
> say %a.WHAT; # -> (Hash)
> say so %a: # -> True

This works, but only on the whole data structure (which is a collection of Pair objects):

> my $a = (54 => 12) does False; # -> 54 => 12
> say $a.WHAT; # -> (Pair+{<anon|5>})
> say so $a; # -> False
> say $a<54>; # -> 12
> say so $a<54>; # -> True

9.19.1. does (Hash)

This bevaes the same as but. See sectuon 8.25, “but (Array)” for an details.

153

154

Chapter 10. Procedures
Procedures is the traditional basic building block in writing maintainable code, breaking large
programs into smaller units. (Object Orientation is another approach, and we’ll get back to that in
chapter Chapter 17, Classes.)

10.1. Procedures Without Arguments
Define a parameterless procedure like this:

sub hello
{
 say "Hello";
}

hello; # Call it like this,
hello(); # or this.

10.2. Procedures With Arguments
With an explicit parameter list:

sub add ($first-value, $second-value)
{
 return $first-value + $second-value;
}

say add(1, 2); # Call it like this,
say add 1, 2; # or this.

Beware of precedence, and use parens to avoid confusion:

say add(1, 2), 3; # -> 33
say add 1, 2, 3;
===SORRY!=== Error while compiling:
Calling add(Int, Int, Int) will never work with declared signature ($first-value,
$second-value)

What if we try with a text string?

> my $result = add "10", 2; # -> 12

The string "10" is coerced to a number (10), and it works.

155

It works because "10" can be converted to a number.

But if we try something that cannot be converted, we get a run time error:

> my $result = add "ten", 2;
Cannot convert string to number: base-10 number must begin
with valid digits or '.' in '⏏ten' (indicated by ⏏)
 in sub add at <unknown file> line 1

10.3. @_
We can use procedures without signatures. Any arguments passed is available in the @_ variable:

> sub test { .say for @_; }
> test
Nil
> test 1, 2, 3
1
2
3

@_ is not available if we have a procedure signature:

> sub test ($arg) { .say for @_; }
Placeholder variable '@_' cannot override existing signature
------> sub⏏ test ($al) { .say for @_; }

@_ flattens lists, but not hashes. Be careful, or even better: don’t use it.

10.3.1. $_

We can use $_ as a procedure variable:

> sub x ($_) { .say; .say; }
> x(12)
12
12

10.4. Placeholder Variables
We introduced Placeholder Variables in section 8.12.1, “Placeholder Variables”. They can be used
with any procedure:

156

File: placeholder

sub test
{
 say "Argument 1: $^a"; # -> Argument 1: A
 say "Argument 2: $^b"; # -> Argument 2: B
}

test("A", "B");

Placeholder variables pop into existence when we use them. They are assigned to the values in
alphabetical order, and not the order in which they are first used.

File: placeholder2

sub test
{
 say "Argument 2: $^b"; # -> Argument 2: B
 say "Argument 1: $^a"; # -> Argument 1: A
}

test("A", "B");

10.4.1. Named Placeholder Variables

We can have Named Placeholder Variables. Specify a colon between the sigil and the name:

File: placeholder-named

sub test
{
 say "Argument 1: $:first"; # -> Argument 1: 12
 say "Argument 2: $:second"; # -> Argument 2: 23
}

test(first => 12, second => 23);

10.5. Procedures as variables
We can store a referance to a procedure in a variable, and execute it later on:

> my &code = sub { say "12345"; }
sub { }

> &code();
12345

157

Or in a scalar (but don’t):

> my $code = sub { say "12345"; }
sub { }

> $code()
12345

10.5.1. anon

The anonymous procedures above works fine as they don’t have any arguments. If we were to
introduce arguments, we would have to name them:

> my &code = sub something($arg) { say $arg ~ "123"; }

That gives us a name, that we can use to call the procedure with (in the normal way). We can
prevent that by using anon sub:

> my &code = anon sub something($arg) { say $arg ~ "123"; }
> something;
===SORRY!=== Error while compiling:
Undeclared routine: something used at line 1

Note that if you drop the assignment, you’ll get an uncallable anonymous function.

10.6. Type Constraints
We can use a type constraint to prevent automatic conversion of strings to numbers (and get a
compile time error instead):

File: num-add-err

sub add (Numeric $first-value, Numeric $second-value)
{
 return $first-value + $second-value;
}
say add "10", 2;

$ raku num-add-err
==SORRY!=== Error while compiling ./num-add-err
Calling add(Str, Int) will never work with declared signature (Numeric $first-value,
 Numeric $second-value) at ./num-add-err:7
------> say ⏏add "10", 2;

158

Note that Numeric also allows an undefined value:

File: num-add-err2

sub add (Numeric $first-value, Numeric $second-value)
{
 return $first-value + $second-value;
}

my Numeric $a; my Numeric $b;

say add $a, $b;

$ raku num-add-err2
Use of uninitialized value of type Numeric in numeric context
 in sub add at ./num-add-err2 line 3
Use of uninitialized value of type Numeric in numeric context
 in sub add at ./num-add-err2 line 3
0

The solution is adding the :D adverb (see section 3.5, “:D (Defined Adverb)”):

File: num-add-err3

sub add (Numeric:D $first-value, Numeric:D $second-value)
{
 return $first-value + $second-value;
}

my Numeric $a; my Numeric $b;

say add $a, $b;

$ raku num-add-err3
Parameter '$first-value' of routine 'add' must be an object instance of type
'Numeric', not a type object of type 'Numeric'. Did you forget a '.new'?
 in sub add at ./num-add3 line 3
 in block <unit> at ./num-add3 line 10

Type Constraints give better error messages, and the check is done at compile time,
before we have run any code (so we can avoid a program crash in the middle of
something that can leave a mess in e.g. the file system or a database).

10.7. return
Use return to stop execution of the currwnt procedure or method and give the specified value (if

159

any, Nil otherwise) to the caller (as the return value).

Note that if we have set up relevant Phasers (see the «Advanced Raku» course), They will be run
before control is returned to the caller.

If we have specified a return value constraint (see section 10.7.2, “Return Value Constraints”), the
value will be checked against it. If the check fails, an exception is thrown.

Note that return is implemented as a procedure and not a keyword, so procedure
precedence rules applies.

10.7.1. return-rw

return gives back a value, not a container, and you cannot change the value.

This will fail:

> sub abc { return 123; }
> say ++abc();

But we can use return-rw (as in «return read write») to get a container that we can change.

This fails as well:

> sub abc { return-rw 123; }
> say ++abc(); # -> 124

It fails as return-rw tries to return the container, and as there isn’t one it returns the value 123
instead. That is perfectly legal, but the prefix ++ will fail.

File: return-rw

sub abc
{
 my $a = 123;
 return-rw $a;
}

say ++abc(); # -> 124

$ raku return-rw
124

This allows the use of procedure calls as anonymous variables. It may not be very useful in practice.

160

10.7.2. Return Value Constraints

We can have type constraints on the return value, as well as on the input values as shown in section
10.6, “Type Constraints”.

We can specify the return type constraints in several ways:

sub X ($a, $b --> Int) { $a + $b }
sub X ($a, $b) returns Int { $a + $b }
sub X ($a, $b) of Int { $a + $b }
my Int sub X ($a, $b) { $a + $b }

We get an Exception if we try to return a value that doesn’t fit the restriction.

It is possible to return an explicit value:

> sub random(--> 12) { rand }
> say random; # -> 12

We can return Nil as an error (or «I give in») value, even with a return type constraint:

> sub abc (--> Int) { Nil; }
> abc; # -> Nil

Even if we insist on a defined return value:

> sub abc (--> Int:D) { Nil; }
> abc; # -> Nil

10.8. @*ARGS
We can use the dynamic variable @*ARGS to get input from the command line:

File: hello-args

say "Hello, @*ARGS[0]!";

@*ARGS is a list with the arguments, with @*ARGS[0] as the first one and so on.

> raku hello-args NPW
Hello, NPW!

A placeholder variable would have been nice here, but that doesn’t work as we do not have a
procedure.

161

10.9. MAIN
We can use the special MAIN procedure and declare procedure arguments, instead of accessing
@*ARGS:

File: hello

sub MAIN ($name)
{
 say "Hello, $name!";
}

The compiler will execute any code in the program first, and call the MAIN routine afterwards. It is
usually not a good idea having any code outside MAIN.

Declare MAIN with as many arguments as you want, with the names you want. The program will fail
with a usage message if you give the wrong number (or types) of arguments to the program:

$ raku hello
Usage:
 hello <name>

$ raku hello all
hello, all!

$ raku hello all you
Usage:
 hello <name>

10.9.1. unit procedure

We can use unit procedure instead, saving us for a block level:

File: hello-unit

unit sub MAIN ($name);

say "Hello, $name!";

This is useful when we have one procedure only, as we usually do short programs with MAIN.

On the other hand, what we gain is a reduction in the number of block levels, and that is usually
not an issue in short programs.

10.9.2. A better usage message

The name of the program and the variable name(s) may not say it all. Add a special comment line
just above the MAIN procedure(s):

162

File: hello-usage

#| Person to greet
sub MAIN ($name)
{
 say "Hello, $name!";
}

$ raku hello-usage all you
Usage:
 hello-usage <name> -- Person to greet

The special comment can be specified after the MAIN procedure as well:

File: hello-usage2

sub MAIN ($name)
{
 say "Hello, $name!";
}
#= Person to greet

--doc

If you use the #| form, the comment will show up when we ask the compiler to give us the
documentation:

$ raku --doc hello-usage
sub MAIN(
 $name,
)
Person to greet

Doing it on the second form (#= after the procedure) doesn’t work:

$ raku --doc hello-usage2

10.10. WHY
We can add comments like this for ordinary procedures as well, and use WHY to get them:

163

File: usage

#| This is one
sub a1 { ; }

#| This is two
sub a2 { ; }
#= Still two

sub a3 { ; }

say &a1.WHY;
say &a2.WHY;
say &a3.WHY;

$ raku usage
This is one
This is two
Still two
No documentation available for type 'Sub'.
Perhaps it can be found at https://docs.raku.org/type/Sub

Note that we have to prefix the procedure names with & so that we don’t execute the procedures,
and apply WHY on the return value.

We can actually do this with any block, as long as it has a name or a pointer to it.

Block comments are part of pod, the inline documentation sublanguage. We’ll get
back to it in the «Advanced Raku» course.

WHY is a bridge from one world to the other…

10.10.1. MAIN with typing

We can add strong typing to the arguments we pass to MAIN, but have the same problem as
described in section 6.5.1, “prompt” that strings are written without quotes, so the compiler
assumes that they are strings. A number without quotes is eiter a number - or a string without
quotes.

With prompt we could avoid this by specifying numbers with quotes to force the compiler to treat
them as strings, but that doesn’t work in the shell, as the shell uses quotes to group text and
removes them before passing the content on to the program.

Spaces are used to separate arguments, and we must quote the string if we want a space inside it.

File: args

say "Argument: «{ $_ }»" for @*ARGS;

164

And running it:

$ raku args 123 "456 789" '10 11 12' 13
Argument: «123»
Argument: «456 789»
Argument: «10 11 12»
Argument: «13»

The quotes are used by the shell, both types (single and double).

So how do we specify quotes so that the shell leaves them alone, and sends them on to the
program?

We can try using both single and double quotes at the same time:

$ raku args "'456'" '"10"'
Argument: «'456'»
Argument: «"10"»

And that works. At least for «bash», the shell I am using. Other shells may do it differently.

Exercise 10.1

Write a program that shows the type of the input, and a sorted (alphabetically) list of methods
available for objects (or values) of that type.

E.g.

$ raku type-methods "3+4i"
3+4i (of type ComplexStr) supports: (abs ACCEPTS acos acosec acosech acosh acotan
acotanh asec asech asin asinh atan atan2 atanh base base-repeating Bool Bridge
BUILDALL ceiling cis Complex conj cos cosec cosech cosh cotan cotanh denominator
DUMP exp FatRat floor gist Int is-prime isNaN log log10 narrow new norm nude Num
numerator Numeric perl polymod pred rand Range Rat Real roots round sec sech sign
sin sinh sqrt Str succ tan tanh truncate unpolar WHICH)

Tips: start with a type as e.g. Int and try it out in REPL.

The types we get for input (as seen in section 6.5.2, “Str Inheritance Tree”) are:

Normal type Input type

Int IntStr

Num NumStr

Rat RatStr

165

Complex ComplexStr

10.11. IntStr Gotcha
This seems ok, right?

File: intstr-gotcha

multi MAIN (Int $number)
{
 say "Integer: $number";
}

multi MAIN (Str $string)
{
 say "String: $string";
}

Running it:

$ raku intstr-gotcha qwwe
String: qwwe

But integers doesn’t work:

$ raku intstr-gotcha 12
Ambiguous call to 'MAIN(IntStr)'; these signatures all match:
:(Int $number)
:(Str $string)
 in block <unit> at content/code/intstr-gotcha line 8

The problem is that we got the IntStr type, and as it inherits from both Int and Str we were unable
to choose between the «MAIN» candidates.

Exercise 10.2

Solve this problem.

10.12. Multiple Dispatch
We can have different versions of a procedure, specified with the multi keyword, with different
parameter lists (or «signatures»):

166

multi sub do-something ($file1) { ... }
multi sub do-something ($file1, $file2) { ... }

 We can skip the sub when we specify multi, if we want to.

With type constraints:

multi add (Numeric $value1, Numeric $value2) { ... }
multi add (Str $value1, Str $value2) { ... }

10.12.1. Stub Operator

We can specify placeholder code (also called the «stub or «Yada, yada, yada» operator instead of
ordinary code.

The code will compile, but will complain if we try to execute it:

Code Action

… fail

!!! die

??? warn

They will be covered in the «Advanced Raku» course.

yada

We can check if a procedure is stubbed with yada:

sub a { 1; }; say &a.yada; # -> False;
sub b { ... }; say &b.yada; # -> True;
sub c { !!! }; say &c.yada; # -> True;
sub d { ??? }; say &d.yada; # -> True;

10.12.2. The Fibonacci Numbers

This is the first 10 Fibonacci Numbers: «1, 1, 2, 3, 5, 8, 13, 21, 34, 55».

The first value is 1, the second is also 1, and after that each value is the sum of the two preceding
values.

I have chosen to present the version of the numbers starting with 1. There is
another version that starts with zero (and the indices are off). The answer to «give
me the third Fibonacci number» is either 1 or 2.

Here are a couple of programs that prints the given Fibonacci number.

167

With a loop:

File: fibonacci-loop

sub MAIN (Int $n)
{
 say fibonacci $n;
}

sub fibonacci (Int $n)
{
 return 1 if $n == 1 or $n == 2;

 my @fib = (1, 1);

 for 2 .. $n -1 -> $i
 {
 @fib[$i] = @fib[$i -1] + @fib[$i -2]
 }

 return @fib.tail;
}

We can use recursion (a procedure that calls itself, repeatedly):

File: fibonacci-recursive

sub MAIN (Int $n)
{
 say fibonacci $n;
}

sub fibonacci (Int $n)
{
 return 1 if $n == 1 or $n == 2;

 return fibonacci($n-1) + fibonacci($n-2)
}

Much shorter, and it is actually easier to understand than the loop version.

We can use multi to factor out the first two values:

168

File: fibonacci-multi

sub MAIN (Int $n)
{
 say fibonacci $n;
}

multi fibonacci (1) { 1 }
multi fibonacci (2) { 1 }

multi fibonacci (Int $n where $n > 2)
{
 fibonacci($n - 2) + fibonacci($n - 1)
}

So what can we use the Fibonacci numbers to? Nothing much, except showing off our mathematical
knowledge, and the power of Raku.

(We’ll show off a little more in section 16.3.1, “The Fibonacci Sequence”.)

The recursive version is slower than the loop version. We’ll show this, and explain
why, in section 15.5, “Timing Fibonacci”.

Multiple dispatch is explained in detail in the «Advanced Raku» course. There we
present proto, and ways to defer execution to other proto candidates.

10.13. Procedure Arguments
Values passed to a procedure are read-only by default:

File: increment

sub increment ($value)
{
 $value++;
 return $value;
}

my $number = increment(12);

$ raku increment
Cannot resolve caller postfix:<++>(Int);
the following candidates match the type
but require mutable arguments:
 (Mu:D $a is rw)
 (Int:D $a is rw)

169

10.13.1. is rw

The error message gives a hint: is rw («is read write»). This is a trait, that we can add to parameters.
Let us try:

File: increment2

sub increment ($value is rw)
{
 $value++;
 return $value;
}

my $number = increment(12);

$ raku increment2
Parameter '$value' expected a writable container,
but got Int value
 in sub increment at increment2 line 3
 in block <unit> at increment2 line 9

And this fails as well. The problem is that is rw tells the procedure that it can change the variable in
the calling code, but we called it with a value. And values cannot be changed:

> 12 = 13;
Cannot modify an immutable Int (12)
 in block <unit> at <unknown file> line 1

This works:

> my $value = 12;
> my $result = increment($value);
> say $value; # -> 13

But the side effect, that the procedure call changes the value of a variable outside itself without an
assignment, is something that should be avoided.

It will fail again if you try to adjust the value passed:

> my $result = increment($value + 1);

10.13.2. is copy

The is copy trait is more fool proof. You get a real variable, with a copy of the value passed to it,
and it (the copy) can be changed at will.

170

File: increment3

sub increment ($value is copy)
{
 $value++;
 return $value;
}

say increment(12);

$ raku increment3
13

10.13.3. Optional Arguments

It is possible to specify a default value for an argument, making it optional:

sub do-something ($value, $optional = "") { ... }

We can have more of them:

sub do-something-else ($value, $optional1 = 5, $optional2 = $value * 2) { ... }

It is not possible to assign a value to $optional2 and not $optional1.

> do-something-else(11, 101);

10.13.4. Named Arguments

A procedure taking many arguments can be a problem. Someone will sooner or later get the order
of the arguments wrong.

Named arguments, specified by prefixing the variable with a : (colon) in the argument list, removes
that problem, as the order is now irrelevant:

> sub aaa (:$a, :$b) { return 2*$a + $b; }
> say aaa(a => 2, b => 3); # -> 7
> say aaa(b => 3, a => 2); # -> 7

Named arguments makes it possible to have many optional arguments, and you can use as many or
few as you want, regardless of order:

171

> sub bbb (:$a = 12, :$b = 13, :$c = 12, :$d = 13)
> {
> return $a + $b + $c + $d;
> }
> aaa(a => 1);
> aaa(d => 3, a => 4);

You can mix normal (or positional) and named arguments, but the positional ones must come first:

> sub ccc ($a, $b, :$c, :$b) { ... }

Named arguments may remind you of the Pair syntax (see section 9.1, “Pair”). That
is no coincidence, as they really are Pair.

Named Argument Shortcut

Using good variable names may lead to situations like this:

File: named

sub cost (:$height, :$width)
{
 return $height * $width * 4;
}

my $height = 12;
my $width = 512;

say cost(height => $height, width => $width);

As long as the variable names are the same, we can shorten this to:

File: named2 (partial)

say cost(:$height, :$width);

Running them:

$ raku named
24576
$ raku named2
24576

172

The Needle in the Haystack Problem

Let us revisit the «needle in the haystack problem» described in passing in section 9.6, “values”,
finding the key given a value from a hash.

This requires brute force:

File: haystack

sub find-value-in-hash (%hash, $value, :$all = False, :$verbose = False)
{
 say "Looking for $value:";
 for %hash.kv -> $key, $val
 {
 say "- Checking $key" if $verbose;
 if $val eq $value
 {
 say "- Found it: $key -> $val";
 last unless $all;
 }
 }
}

my %haystack = (A => "Bike", Q => "Beetle", "#" => "Book", 12 => "Needle",
 17 => "Frog", 29 => "DVD player (defective)", 76 => "Bike");

find-value-in-hash(%haystack, "Beetle");
find-value-in-hash(%haystack, "Bike", :verbose);
find-value-in-hash(%haystack, "Beetle");
find-value-in-hash(%haystack, "Bike", :all);

I have used named optional arguments here.

And running it:

$ raku haystack
Looking for Beetle:
- Found it: Q -> Beetle
Looking for Bike:
- Checking 17
- Checking 12
- Checking 29
- Checking Q
- Checking A
- Found it: A -> Bike
Looking for Beetle:
- Found it: Q -> Beetle
Looking for Bike:
- Found it: A -> Bike
- Found it: 76 -> Bike

173

10.13.5. Named Mandatory Arguments

We can make a named argument mandatory with the is required trait, or the ! short form:

> sub ccc ($a, $b, :$c!, :$d is required) { ... }

This gives a nice error message:

> ccc(1, 2);
Required named parameter 'c' not passed in sub ccc at ...

Default values are meaningless for mandatory arguments. The compiler will not protest, though. So
:$d is required = False is legal, even if the default value is useless.

10.13.6. Adverbs

It is possible to use an alternative adverbial syntax when specifying named arguments in a
procedure call:

> sub aa (:$a, :$b) { say "A: $a B: $b"; }

> aa(a => 1, b => 2); # -> A: 1 B: 2
> aa(:a(1), :b(2)); # -> A: 1 B: 2
> aa(:1a, :2b); # -> A: 1 B: 2

> aa(a => "r", b => "h"); # -> A: r B: h
> aa(:a<r> , :b<h>); # -> A: r B: h

Adverbs works with the built-in functions as well.

So far these named parameters have all taken values. Without any other constraints and no
argument value, a named parameter is a Boolean. The adverb form with no value (and no
constraint) gets True (because that’s what Pairs do):

> aa(:a, :b); # -> A: True B: True

An ! in front of the adverb name makes it a False value:

> aa(:a, :!b); # -> A: True B: False

We can allow any named argument by using %_ (just as we could allow anything with @_):

174

> sub named { say %_ }
> named(name => 'Tom'); # -> {name => Tom}
> named(name => 'Phil', age => 12); # -> {age => 12, name => Phil}
> named; # -> {}

We can combine named and positionals:

> sub both { say @_; say %_; }

> both(12, 13, name => "Tom", age => 45);
[12 13]
{age => 45, name => Tom}

> both(12, name => "Tom", age => 45, "19C");
[12 19C]
{age => 45, name => Tom}

They can be intermixed, primarily to add to the confusion.

10.14. * (Slurpy Operator)
If we try to pass a bunch of scalars to a procedure expecting an array we’ll get an error:

> sub a (@values) { say "ok"; }
> a(1,2,3,4,5);
===SORRY!=== Error while compiling:
Calling a(Int, Int, Int, Int, Int) will never work with declared signature (@values)
------> <BOL>⏏a(1,2,3,4,5);

We can remedy that in the procedure signature by using a slurpy (or «variadic argument») array,
that grabs all the remaining scalar values as a list. Add a * before the list argument: *@values:

> sub a (*@values) { say "ok"; }
> a(1,2,3,4,5);
ok

We can of avoid this problem by ensuring that we always call the procedure with a list as
argument, but that will not work with arguments passed on the command line (as they will always
be scalar values). See the next section for details.

Or we can drop the signature, and access @_ in the procedure body.

10.14.1. Slurpy MAIN

Arguments passed on the command line are always scalars, but we can use a slurpy array to grab

175

them all by adding a * before the list argument: *@words:

File: words

sub MAIN (*@words)
{
 @words.grep({ .contains("a") }).say;
}

Running it:

$ raku words absn kakak alala 9099 00 00
(absn kakak alala)

$ raku words
()

A slurpy argument allows zero arguments, which is not a good thing.

We can force it to demand at least one argument:

sub MAIN ($word1, *@words) { ... }

Good luck explaining the code…

Using a type constraint gives self-explaining code:

File: words2

#| One or more words to search for lines with the letter 'a'
sub MAIN (*@words where @words.elems >= 1)
{
 @words.grep({ .contains("a") }).say;
}

(And it certainly doesn’t hurt to add an explicit usage comment.)

contains does what you think; checks if the string on the left contains the string on the right. See
section 11.4.2, “contains (Partial Strings)” for details.

We can polish the where condition a little bit:

File: words3 (partial)

sub MAIN (*@words where so @words)

176

10.14.2. Random Primes Revisited

Let us revisit the random primes code we wrote in Exercise 8.3:

> (1 .. 100).grep(*.is-prime).pick.say; # -> 13
> (1 .. 1000).grep(*.is-prime).pick.say; # -> 1861

We can rewrite it as a program, taking the upper limit as argument:

File: random-prime

sub MAIN ($upper-limit)
{
 (1 .. $upper-limit).grep(*.is-prime).pick.say;
}

$ raku random-prime aaaaa
Cannot convert string to number: base-10 number must
begin with valid digits or '.' in '⏏aaa' (indicated by ⏏)
 in sub MAIN at random-prime line 3
 in block <unit> at random-prime line 3

We’ll get a better error message if we add an Int constraint to the input argument:

File: random-prime2 (partial)

sub MAIN (Int $upper-limit)

$ raku random-prime2 aaaaa
Usage:
 random-prime2 <upper-limit>

The Int constraint ensures that only integers are allowed. But what about negative integers?

$ raku random-prime2 -100
Nil

No, the prime numbers are all positive.

REPL can help if you didn’t know that:

> (-17).is-prime
False

177

The (1 .. -100) construct will try to generate integers from 1 up to -100. That is impossible, so Nil
(an empty list) is returned. We then pick one random value from an empty list, and get Nil.

If you have heard about Sequences (e.g. 1 … -100); yes they would have worked here, and no it
wouldn’t have mattered. We’ll cover sequences later.

It is better to make negative input values illegal, and this is possible.

We can add a constraint:

File: random-prime3

sub MAIN (Int $upper-limit where * > 0)
{
 (1 .. $upper-limit).grep(*.is-prime).pick.say;
}

$ raku random-prime3 -100
Usage:
 random-prime2 <upper-limit>

 Raku has a type UInt for «Unsigned Int», and we could of course have used that.

10.14.3. Better Usage Messages

The Usage message doesn’t really inform us of the legal values. We can rename the variable to e.g.
$upper-limit-as-a-positive-integer-larger-than-zero.

But who’d want to type variable names like that?

We can add text to the usage message, like this:

File: random-prime4

#| A random prime number between 1 and ...
sub MAIN (Int $upper-limit where * > 0)
{
 (1 .. $upper-limit).grep(*.is-prime).pick.say;
}

Place the line just before the procedure.

$ raku random-prime4 -100
Usage:
 random-prime2 <upper-limit> -- A random prime \
 number between 1 and the given integer upper limit

178

Exercise 10.3

What is the problem with the random prime number programs?

Rewrite the program to avoid this problem.

10.15. Blocks Revisited
We introduced Blocks in section 4.1, “Blocks”, and defined it as: «A block is a collection of code that
is treated as a whole. Blocks are set up inside a pair of curly braces.»

We can assign them to variables, and execute them:

> my $block = { "Hello, $_."; };
> say $block("Thomas");
Hello, Thomas.

Here we have a single argument, passed in $_.

We can use placeholder variables (as described in 10.4, “Placeholder Variables”), just as with
procedures. They are useful if we want to pass more than one argument:

> my $block = { "Hello, $^a $^b."; };
> say $block("Thomas", "Mann");
Hello, Thomas Mann.

10.15.1. ->

We can also pass arguments in named variables to blocks (as with procedures), with a signature
between -> and the block:

> my $add = -> $a, $b = 2 { $a + $b };
> say $add(40);
42

Optional arguments (with a default value) work, as shown above (with $b = 2).

Procedures are essentially named blocks. But they have some extra bells and whistles, mainly
multiple dispatch (see 10.12, “Multiple Dispatch”). And a nicer syntax.

10.15.2. <-> / is rw

The variables are read only by default, but we can make them read write with the is rw adverb:

179

my $swap = -> $a is rw, $b is rw { ($a, $b) = ($b, $a) };
my ($a, $b) = (2, 4);
$swap($a, $b);
say $a; # -> 4

Or we can use the two way arrow <-> instead of the one way one, but that turns all the parameters
to read write.

my $swap = <-> $a, $b { ($a, $b) = ($b, $a) };

10.16. Calling a procedure specified in a variable
We can call a procedure where we have the name in a variable:

sub AAA { say "ok"; }
my $sub = "AAA";
&::($sub)(); # -> ok

Using a dispatch table is a better solution:

File: dispatch-table

sub aaa
{
 say "12345";
}

sub bbb
{
 say "FOOBAR";
}

my %table;

%table{"a"} = &aaa();
%table{"b"} = &bbb();

&(%table<a>); # Execute "aaa"

my $p = "b";

&(%table{$p}); # Execute "bbb"

Calling a method stored in variable is also possible. See section 17.22, “Calling a
method specified in a variable”.

180

10.17. Procedures in Procedures
It is possible to place a procedure definition inside another procedure. The result is that the inner
procedure is only visible inside the outer one (is in scope), and can only be called by that one.

181

182

Chapter 11. Regex Intro
Regular Expressions are a sublanguage, with its own syntax and rules…

Some people, when confronted with a problem, think «I know, I’ll use
regular expressions.» Now they have two problems.

— http://regex.info/blog/2006-09-15/247

One way of handling this «problem» is avoiding using regexes in the first place.

This chapter presents some typical Regexes, and then non-regex alternatives where they exist. The
non-regex alternatives are generally much faster.

The paradox is that the non-regex alternatives replace quite easy regexes that should be almost
impossible to screw up, whereas more advanced regexes that really could use alternatives
obviously don’t have them.

If you embrace the non-regex versions in this chapter, instead of at least trying to understad the
coresponding Regexes, you’ll be at a disadvantage when you sometime in the future actually need
to make a Regex.

Raku prefers the name «Regex» (and plural «Regexes») instead of «Regular Expressions», as they
have diverged from the «regular» origins a long time ago. You may see both names though. (The
names «Pattern» and «Rule» have been suggested, but didn’t catch on. You may come across them
in older blog posts etc.)

11.1. What is a Regex?
A Regex is a way of matching with expression (that can be interoreted in several ways) and not a
static text.

We can start with the «hello» program from section 10.9, “MAIN”.

File: hello

sub MAIN ($name)
{
 say "Hello, $name!";
}

Our task is to adapt it, so that the message is different depending on the name:

• It the name is «Steve», «Neve» or «Barry» we print «Go away, <name>!».

• If the name is 5 characters long and the middle character is a wovel we print "Hello, <name>.
Whatsup?»

• For all other names we print «Hello, <name>»

183

File: hello-nonregex

sub MAIN ($name)
{
 if $name eq "Steve" or $name eq "Neve" or $name eq "Barry"
 {
 say "Go away, $name!";
 }
 elsif $name.chars == 5 and ($name.substr(2,1) eq "a"
 or $name.substr(2,1) eq "e"
 or $name.substr(2,1) eq "i"
 or $name.substr(2,1) eq "o"
 or $name.substr(2,1) eq "u")
 {
 say "Hello, $name. Whatsup?";
 }
 else
 {
 say "Hello, $name!";
 }
}

So far so good. A lot of code, but it works. But what if we decide to insist on letters only in the name
(the one with 5 characters)?

We can rewrite that one as:

File: hello-regex (partial)

 elsif $name ~~ /^ \w\w <[aeiou]> \w\w $/

• The «/» character marks the beginning and end of a Regex, and whitespace is ignored by default,
as are newlines. The «^» character binds to the beginning of the string, and «$» binds to the end.

• «\w» matches a »word character» that is more or less what we want (a letter).

• «<[aeiou]>» is a character group where we match one of the given characters.

Much more compact, and actually easier to understand - when you have some Regex knowledge.

11.2. Making a Regex
The easiest way to generate a Regex is to put it inside two /:

/abc/
/12345/

A stand alone Regex (like these) is matched against $_ (the topic variable):

184

> $_ = "abc"; say so /abc/; # -> True
> say so /abcd/; # -> False

We can use given (see section 4.12, “given”) to set $_ for us:

> say so /abc/ given "abc"; # -> True

11.3. ~~ (Smartmatch Operator)
The «Smartmatch Operator» ~~ is fundamental to Regexes. We can use it to compare almost
anything with almost anything else (and not just a Regex).

If we match against $_, as we did in the previous section, we can drop ~~. These are all equal:

> $_ ~~ m/1234/;
> $_ ~~ /1234/;
> /1234/;

11.3.1. m/…/

Of we prefix the Regex with m (for «match») we can swap the slashes (/) with any other character.
This is useful if we have a slash in the Regex itself:

> m|/usr/bin/|;

We can use characters with an opening and a closing version:

> m{123};

11.3.2. !~ (Negated Smartmatch Operator)

Use the «Negated Smartmatch Operator» !~ to invert the match.

11.4. Partial Strings
We can check if a given string contains another one:

> say so "12345" ~~ /23/; # -> True
> say so "12345" ~~ /33/; # -> False

We can skip the slashes on the right side, but that changes the meaning:

185

> say so "12345" ~~ "23"; # -> False

We are now smartmatching two strings, and that is the same as a normal string comparison which
returns False as they are not equal.

We can put the left hand side in a variable:

> my $val = "12345";
> say so $val ~~ /23/; # -> True

We can do the same with the regex:

> my $b = /23/;
> say so "12345" ~~ $b; # -> True
> say $b.WHAT; # -> (Regex)

We can compare with a type:

> say so "12345" ~~ Int; # -> False
> say so 12345 ~~ Int; # -> True

11.4.1. Regex (type)

We can use the type system:

> my Regex $b = /23/;

11.4.2. contains (Partial Strings)

Partial strings is so useful that we have a dedicated contains function for it:

> "12345".contains("23"); # -> True

> "12345".contains("33"); # -> False

11.4.3. index (Partial Strings)

Use index to get the position of one string in another. It will return the index if found, and NIL if not.

> "12345".index("1"); # -> 0
> "12345".index("0"); # -> Nil

186

The first character has position (or offset) 0, so be careful with the return value:

"12345".index("1").defined; # -> True
"12345".index("0").defined; # -> False

so "12345".index("1"); # -> False
so "12345".index("0"); # -> False

Use contains if you don’t need the position. Then you’ll not have to worry about
definedness.

11.4.4. rindex (Partial Strings)

rindex is similar to index, but searches from the right, giving the position of the last match:

> "121212121".index(1); # -> 0
> "121212121".rindex(1); # -> 8

11.4.5. indices (Partial Strings)

indices is similar to index, but searches for all occurences of one string in another. It returns an
empty list if it was not found.

> say "banana".indices("a"); # -> (1 3 5)
> say "banana".indices("ana"); # -> (1)
> say "banana".indices("ana", 2); # -> (3)
> say "banana".indices("b"); # -> (0)
> say "banana".indices("X"); # -> ()

If the optional parameter :overlap is specified the search continues from the next position in the
string, and not after the match as by default:

> say "banana".indices("ana"); # -> (1)
> say "banana".indices("ana", :overlap); # -> (1 3)
> say "aaaaaaaaaa".indices("aaa"); # -> (0 3 6)
> say "aaaaaaaaaa".indices("aaa", :overlap); # -> (0 1 2 3 4 5 6 7)

11.5. Beginning or end of a string
The Regex in the previous section will match regardless of where in the string it was found. We can
use an anchor to force the match to only consider the start, end or both of the string.

Anchor Example Description

^ /^123/ Match at the start of the string only

187

$ /345$/ Match at the end of the string only

11.5.1. starts-with (Partial Strings)

Matching from the start of the string:

> say so "12345" ~~ /^23/; # -> False
> say so "12345" ~~ /^123/; # -> True

We can use starts-with instead:

> "12345".starts-with("23"); # -> False
> "12345".starts-with("123"); # -> True

11.5.2. ends-with (Partial Strings)

Matching from the end of the string:

> say so "12345" ~~ /123$/; # -> False
> say so "12345" ~~ /45$/; # -> True

We can use ends-with instead:

> "12345".ends-with("123"); # -> False
> "12345".ends-with("45"); # -> True

11.5.3. equal

We can use both anchors, and that gives us the same as normal string comparison with eq (as we
haven’t used any Regex special characters yet):

> say so "12345" ~~ /^12345$/; # -> True
> "12345" eq "12345"; # -> True

Or even:

> say "12345" ~~ "12345"; # -> True

11.6. Regex Metacharacters
Inside a Regex Alphanumeric characters (letters and digits) and underscores (_) are taken literally,
spaces are ignored, and every other character is a meta character with a special meaning.

188

Spaces and newlines inside Regexes are ignored by default, so feel free to add
them to enhance readability.

We can get a literal metacharacter by quoting it (with a backslash):

> say so "12/34" ~~ /2\/3/; # -> True

11.7. $/ (Match Object)
The $/ object holds the result of the last Regex match (or Nil if we have no match):

> "12345" ~~ /12/; say $/; # -> ｢12｣
> "12345" ~~ /67/; say $/; # -> Nil

Note the funny angle brackets. They are used when we print a match object, to
remind us that $/ is a match object, and not a string.

Use explicit stringification:

> say $/.Str; # -> 12
> say ~$/; # -> 12

Note that put (see section 6.3.3, “put vs say”) does stringification, and hides the problem:

> "12345" ~~ /12/; put $/; # -> 12

Passing a match object on to code that expects a string can lead to errors. If the
code in question uses an external library through Nativecall the program is almost
certain to crash.

Nativecall will be covered in detail in the «Advanced Raku» course.

11.8. Special Characters
A . (single period) matches exactly one character:

> say so "12345" ~~ /1.3.5/; # -> True

We can add a quantifier after any character:

Quantifier Greedy Description

189

? No Match zero or one time

+ Yes Match one or more times

* Yes Match zero, one or more times

** number No Match exactly «number» times

** min..max Yes Match minimum «min» and maximum «max» times

Note that some of the quantifiers (as indicated) make a match greedy. It will match as much as
possible, as long as it manages to match the expression:

> say so "111111111111112345" ~~ /1+2345/; # -> True
> say so "111111111111112345" ~~ /1+2345/; # -> True

> say so "12345" ~~ /123459/; # -> False
> say so "12345" ~~ /123459*/; # -> True

> say so "011111111111111234" ~~ /01 ** 1..20 234/; # -> True
> say so "011111111111111234" ~~ /01 ** 1..10 234/; # -> False

11.9. Capturing and Grouping
So far we have only shown how to match (or not), but we can divide the match in several parts.

11.9.1. () (Capturing)

We can use parens to capture matches, and reference them as $0, $1 (and so on) later on:

> "12345" ~~ /(2)(.4)/;
> say $0.Str; # -> 2
> say $1.Str; # -> 34

We can use the match object instead of $0, $1 (and so on):

> say $/
｢234｣
 0 => ｢2｣
 1 => ｢34｣

We can look up an individual match:

> say $/[1].Str; # -> 23456

This works as well:

190

> say $[1].Str; # -> 23456

11.9.2. Capture Numbering

Pairs of parens are numbered left to right, starting from zero:

> say "0: $0; 1: $1" if 'abc' ~~ /(a) b (c)/; # -> 0: a; 1: c

Captures can be nested, and are numbered according to the level:

if 'abc' ~~ / (a (.) (.)) /
{
 say "Outer: $0"; # -> Outer: abc
 say "Inner: $0[0] and $0[1]"; # -> Inner: b and c
}

The Match Object:

> say $/;
｢abc｣
 0 => ｢abc｣
 0 => ｢b｣
 1 => ｢c｣

11.9.3. [] (Non-capturing grouping)

If we don’t need capturing, we can skip it. Our Regex needs them for grouping, but we can use non-
capturing brackets instead:

> my $valid-ipv4 = /^ [\d ** 1..3] ** 4 % '.' $/;

Benefits of Non-capturing:

• No clutter of the match object with things that isn’t used

• Faster than capturing

11.9.4. <()> (Capture Markers)

When we have a match, the match objects contains the whole string, regardless of how many
captures (if any) we have used.

We can prevent parts of the match from ending up in the match object by using the <(and/or)>
tokens:

<(Do not capture before this token

)> Do not capture after this token

say 'abc' ~~ / a <(b)> c/; # -> ｢b｣
say 'abc' ~~ / a (b) c/; # -> ｢abc｣; 0 => ｢b｣

191

.prematch / .postmatch

It is possible to get the part of the string before and after the match when we use Capture Markers.
Use the prematch and/or postmatch methods on the match object:

> say 'abc' ~~ / a <(b)> c/; # -> ｢b｣
> say $/.prematch; # -> a
> say $/.postmatch; # -> c

These methods return strings (and not match objects).

.orig / .target

We can get the original string as well, regardless of Capture Markers:

> say 'abc' ~~ / a <(b)> c/; # -> ｢b｣
> say $/.orig; # -> abc
> say $/.target # -> abc

orig return an object, and target returns a stringified version of it. As we started with a string
('abc'), they both return strings here.

There are other methods that can be used on match objects. See
https://docs.raku.org/type/Match#Methods for details.

11.10. Character Classes
We can use a Character class to match different kinds of characters.

We have the following defined with a leading backslash (and called «Backslashed Character
Classes»):

Class Match: Negated

\n a newline character (see $?NL in section 6.1, “Newlines”) \N

\t a tab character \T

\h a horisontal whitespace character \H

\v a vertical whitespace character \V

\s a whitespace character (horisontal or vertical) \S

\d a digit (including unicode digits) \D

\w a word character; a letter, digit or underscore (including unicode
letters and digits)

\W

They will match exactly one character, unless combined with a quantifier. The negated version
matches everything - but the normal one.

192

https://docs.raku.org/type/Match#Methods

\s matches newlines as well as spaces:

> say so "abc abf" ~~ /\s/; # -> True;
> say so "abcXabf" ~~ /\s/; # -> False;
> say so "abcXabf\n" ~~ /\s/; # -> True;

We also have more verbosely named Character Classes. The most useful ones are:

Class Alias Description

<alnum> \w <alpha> plus <digit>

<alpha> Alphabetic characters including _

<blank> \h Horizontal whitespace

<cntrl> Control characters

<digit> \d Decimal digits

<graph> <alnum> plus <punct>

<lower> <:Ll> Lowercase characters

<print> <graph> plus <space>, but no <cntrl>

<space> \s Whitespace

<upper> <:Lu> Uppercase characters

<xdigit> Hexadecimal digit [0-9A-Fa-f]

See https://docs.raku.org/language/regexes#Predefined_character_classes for the complete list.

We haven’t shown a character class representing letters only. We have several among the Unicode
Categories that we can use. The most useful (in a very long list) are:

Short Long Description

<:L> <:Letter>

<:Ll> <:Lowercase_Letter>

<:Lu> <:Uppercase_Letter>

<:N> <:Number> Matches digits, unicode digits and things as «½».

<:P> <:Punctuation> or
<:punct>

<:S> <:Symbol>

<:Sc> <:Currency_Symbol> Matches «£», «$», «€» and others.

See https://docs.raku.org/language/regexes#Unicode_properties for the complete list.

> "1234sksjsjsjs1919" ~~ /(<:N>+)/; # $0 -> ｢1234｣
> "1234sksjsjsjs1919" ~~ /(<:N>+)(<:L>)/; # $0 -> ｢1234｣, $1 -> ｢s｣

Counting letters only in a string:

193

https://docs.raku.org/language/regexes#Predefined_character_classes
https://docs.raku.org/language/regexes#Unicode_properties

File: letter-count

sub MAIN ($string)
{
 my $count = $string.comb.grep(* ~~ /<:L>/).elems;

 say "The string contains $count letters.";
}

$ raku letter-count 12Aw
The string contains 2 letters.

$ raku letter-count 12Aw#@ß
The string contains 3 letters.

Note that we can shorten the selection bit:

File: letter-count2 (partial)

my $count = $string.comb.grep(/<:L>/).elems;

Further reading on Unicode:

• https://docs.raku.org/language/regexes#Unicode_properties

• https://en.wikipedia.org/wiki/Unicode_character_property

We can negate them, by inserting ! (an exclamation mark) between : (the colon) and the class
name:

> say so "1234sksjsjsjs1919" ~~ /<:!L>/; # -> True
> say so "abcdefghijklmnopq" ~~ /<:!L>/; # -> False

We can combine several Unicode Categories. Either with a + to add them (as a set union) or - to
remove the right hand side (a set difference) inside the angle brackets:

> say so "1234sksjsjsjs1919" ~~ /<:!L-:N>/; # -> False
> say so "1234sksjsjsjs1919." ~~ /<:!L-:N>/; # -> True

The first one checks for everything that isn’t a letter (!L), then removes the digits. That leaves us
with nothing. The second one does the same, but leaves us with a single period (.).

11.10.1. uniprop

Use uniprop to display the Unicode Category for the first character in the given string:

194

https://docs.raku.org/language/regexes#Unicode_properties
https://en.wikipedia.org/wiki/Unicode_character_property

> "a".uniprop; # -> Ll
> "A".uniprop; # -> Lu
> "ß".uniprop; # -> Ll
> '$'.uniprop; # -> Sc

We can check for specific properties:

say 'a'.uniprop('Alphabetic'); # -> True

uniprops

Use uniprops to get the values for every charatcter in the string:

> "Fix 10!".uniprops; # -> (Lu Ll Ll Zs Nd Nd Po)
> "Fix 10!".uniprops("Letter"); # -> (1 1 1 0 0 0 0)

11.11. Custom Character Classes
We can specify our own Character Classes with <[and]>:

> "abcdefghijklmn" ~~ /(<[fed]>+)/; # $0 -> ｢def｣

Note that a Character Class by itself only matches one character.

We can negate them:

> "abcdefghijklmn" ~~ /(<-[fed]>+)/; # $0 -> ｢abc｣

We can combine them (as with Unicode Properties) with -, and use ranges:

> "1234567890" ~~ /(<[1..9] - [5]>+)/; # $0 -> ｢1234｣

11.12. Non-greedy
We have shown that some of the Regex Quantifiers are greedy, as they match as much as possible.
We can make them non-greedy (or frugal) by adding a ? (a question mark) after the greedy
quantifier:

> "12345A" ~~ /(\d*?)/; # $0 -> ｢｣ # zero or more gives zero.
> "12345A" ~~ /(\d+?)/; # $0 -> ｢1｣ # one or more gives zero.
> "12345A" ~~ /(\d+?)A/; # $0 -> ｢12345｣

195

Non greedy is only applied in the rightwards direction, as the last example shows. We still match
from the beginning (if possible), and get all the digits.

11.12.1. Usage

We can illustrate this with a simple (as in stupid) parser for html. We want to extract the image
tags:

> "AAA BBB" ~~ /(\<img\s.*\>)/;
0 => ｢｣

I have added \s so that we don’t match another tag with a similar name. (There shouldn’t bee any,
but it is common to comment out html tags by renaming them to something not used. Browsers
ignore unknown tags, and so should we.)

That looks promising. But .* is greedy, and will run along until the last > on the line if there are
more of them:

> "AAA BBB CCC DDD" ~~ /(\<img\s.*\>)/;
 0 => ｢ BBB CCC｣

Non-greedy:

> "AAA BBB CCC" ~~ /(\<img\s.*?\>)/;
｢｣

11.13. Backwards References
It is possible to reference things we have already matched with $0, $1 (and so on), inside the Regex.

The «img» tag has no end tag, as opposed to e.g. «b». We can try to write a general regex that
matches any tag, and goes on until the matching end tag.

> "This is bold and cursive and not." ~~ /\<(.*?)\>(.*)\<\/$0\>/
｢bold and cursive and not｣
 0 => ｢b｣
 1 => ｢bold and cursive and not｣

Exercise 11.1

There is a problem with this Regex. What is it?

196

11.13.1. :ignorecase / :i

We can specify case insensitive matching with the :ignorecase (and the short form :i) adverb:

> say so "abcdefghijkl" ~~ /EFG/; # -> False
> say so "abcdefghijkl" ~~ /:i EFG/; # -> True

11.14. Using a Regex
A Regex is usually created with a leading and trailing slash; e.g. /abc/. (We’ll cover other ways in the
«Advanced Raku» course.)

We have only seen Regexes that matches a string. But they can also be used to change the string we
apply them to.

We can apply a Regex to a string in different ways:

Function Metho
d

Description See section

m/.../ Match against $_ 11.3.1, “m/…/”

rx/.../ A Regex object

/.../ match A Regex object (short form of
rx/.../)

11.2, “Making a Regex”

s/.../.../ in-place substitution 11.15, “String Substitution”

S/.../.../ subst non-destructive substitution 11.15.2, “subst (String Substitution)” and
11.15.3, “S/.../.../ (String Substitution)”

tr/.../.../ in-place transliteration 11.17, “Transliteration”

TR/.../.../ trans non-destructive transliteration 11.17.2, “trans (Transliteration)” and
11.17.4, “TR/.../.../ (Transliteration)”

We can use whatever delimiter we want (instead of /) for all of them, except the third one (/.../).

Note that opening and closing versions of characters (as e.g. { and [) only works with matches.
Substitution and transliteration use three slashes, and it isn’t obvious what the third one should be.

 The match method is described in the «Advanced Raku» course.

11.15. String Substitution
Use String Substitution to replace one sequence of characters with another one.

11.15.1. s/.../.../ (String Substitution)

The s/.../.../ operator does the change on the left hand side variable:

197

> my $s = "one two three four";
> $s ~~ s/two/zero/;
> say $s; # -> one zero three four

The substitution is done once by default.

> my $s = "one one one one";
> $s ~~ s/one/zero/;
> say $s; # -> zero one one one

:global / :g

We can specify the :global (or the :g shortform) adverb to do the substitution as many times as
possible:

> my $s = "one one one one";
> $s ~~ s:g/one/zero/;
> say $s; # -> zero zero zero zero

It does not work recursively:

> my $s = "111111111111";
> $s ~~ s:g/11/1/;
> say $s; # -> 111111

"11
1 1 1 1 1 1

11 11 11 11 11"

Figure 11. Substitution

Another take of our character counting program:

File: letter-count-remove

sub MAIN ($string is copy)
{
 $string ~~ s:g/<-:L>+//;

 say "The string contains { $string.chars } letters.";
}

We remove everything that isn’t a letter, and count what we have left.

11.15.2. subst (String Substitution)

subst returns the calling string where the first string is replaced by the second one (or the original
string, if no match was found).

198

> my $s = "one two three four";
> my $t = $s.subst("two", "zero");
> say $s; # -> one two three four
> say $t; # -> one zero three four

It doesn’t change the string or variable it was invoked on, so we can do this:

> my $t = "one two three four".subst("two", "zero");

The substitution is only done once, unless we use the :g (global) adverb:

> "1010101010101020202020202020".subst("10", "X")
X10101010101020202020202020

> "1010101010101020202020202020".subst(:g, "10", "X")
XXXXXXX20202020202020

Assign the new value back, if you want to change the variable we invoked it on:

> $variable .= subst($replace, $with);

11.15.3. S/.../.../ (String Substitution)

s/.../.../ changes the string it is used on. If you want to keep the string unchanged, use S/.../.../
instead:

> $_ = "one two three four";
> my $t = S/two/zero/;
> say $t; # -> one zero three four
> say $_; # -> one two three four

You cannot use smartmatch with the S/.../.../ operator (not even explicitly on
$_).

But we can set $_ implicitly with given (see section 4.12, “given”):

> my $t = S/two/zero/ given "one two three four";

11.15.4. Adverbs

Regex Adverbs) We can use adverbs to change how the Regex works:

199

Adverb Short On Description

:continue :c M Where to start the search.

:exhaustive :ex M All possible matches, including overlapping.

:global :g M All matches, and not just the first one. See section 11.15.1.1, “:global /
:g”.

:ignorecase :i R See section 11.13.1, “:ignorecase / :i”.

:ignoremark :m R Compare base characters only. See below.

:overlap :ov M As :exhaustive, but only one from each starting position.

:pos :p M Anchor the match from the specified position (substring index).

:ratchet :r R No backtrace.

:samecase :ii S Ignore the case when matching, but apply it to the replacement. See
below.

:samemark :mm S As :ignoremark, and applies the accents to the replacement. See below.

:samespace :ss S As :sigspace, and takes the whitespace to the replacement. See below.

:sigspace :s R Make whitespace significant. See below.

The «On» column means:

• M - on matches only

• R - on all Regexes

• S - on Substitution only

Adverbs not shown with «See below» are not described in this book. See https://docs.raku.org/
language/regexes#Adverbs for details.

:ignoremark / :m

Regex: Compare base characters only, ignoring accents:

> say so /:ignoremark abc/ given "åbc"; # -> True
> say so /:ignoremark abc/ given "øbc"; # -> False
> say so /:ignoremark obc/ given "øbc"; # -> True

:samemark / :mm

Substitution only: As :ignoremark, and applies the accents to the replacement.

> say S:samemark:global/a/o/ given "åbäcà"; # -> o̊böcò

:samecase / :ii

Substitution only: Ignore the case when matching, but apply it to the replacement. So «abc» and
«Abc» will match with «abc», «Abc», «ABC» and so on. The replacement string will have the same

200

https://docs.raku.org/language/regexes#Adverbs
https://docs.raku.org/language/regexes#Adverbs

case as specified on the match:

> say S:samecase/abc/def/ given "xABCxabcABx"; # -> xDEFxabcABx

Compare with normal substitution:

> say S/abc/def/ given "xABCxabcABx"; # -> xABCxdefABx

:sigspace / :s

Regex: Make whitespace significant.

say so "abc abc" ~~ /abc abc/; # -> False (as «/abcabc/» does not match)
say so "abc abc" ~~ /:sigspace abc abc/;

Note that the first space (between the adverb and the first «a»letter in the regex) is there as a
delimiter, and it is ignored.

:samespace /:ss

Substitution only: As :sigspace, and takes the whitespace to the replacement.

say S:samespace/a ./c d/ given "a b"; # -> c d
say S:samespace/a ./c d/ given "a\tb"; # -> c\td

11.16. Substitution Tuning
We can specify how many replacements we want with the :x adverb:

$str.subst(/foo/, "no subst", :x(0)); # targeted substitution. Number of times to
substitute. Returns back unmodified.
$str.subst(/foo/, "bar", :x(1)); #replace just the first occurrence.

We can specify which match we want to replace with the :nth adverb:

$str.subst(/foo/, "bar", :nth(3)); # replace nth match alone. Replaces the third foo.
Returns Hey foo foo bar

11.17. Transliteration
Transliteration is the process of replacing one character with another.

201

11.17.1. tr/.../.../ (Transliteration)

The tr/.../.../ operator does the change on the left hand side variable:

> my $s = "1234567890";
> $s ~~ tr/129/ABx/; # -> AB345678x0

If we do not specify enough replacement characters, the last one is (re)used:

> my $s = "1234567890";
> $s ~~ tr/129/A/; # -> AA345678A0

We can remove characters as well:

> my $s = "1234567890";
> $s ~~ tr:delete/129//; # -> 3456780

11.17.2. trans (Transliteration)

Use trans to change one character with another one, given as a Pair:

> say "abcabc".trans("a" => "1"); # -> 1bc1bc

We can do several transliterations at the same time:

> say "abcabc".trans("a" => "1", "b" => "9"); # -> 19c19c

We can use a hash as well:

> my %trans = ("a" => "1", "b" => "9");
> say "abcabc".trans(%trans); # -> 19c19c

Ranges can also be used:

> "secret text".trans(['a' .. 'z'] => ['b' .. 'z', 'a']);

11.17.3. Rotate 13

202

Exercise 11.2

The oldest famous encryption algorithm is «Rotate 13», known from the Roman empire.

The same function encrypts and decrypts, as there are 26 characters in the (roman) alphabet. (The
Romans didn’t have «j» and «v», so they only had 24 characters, but we’ll ignore that historic
anomaly.)

Implement «rotate13».

Handle a-z and A-Z only. All other characters are left unchanged.

The string "Hello, raku programmers!" translates to "Uryyb, enxh cebtenzzref!" and vice versa.

11.17.4. TR/.../.../ (Transliteration)

The tr/.../.../ operator changes the string it is used on. If you want to keep the string unchanged,
use TR/.../.../ instead:

> $_ = "one two three four";
> my $t = TR/oe/xx/;
> say $t; # -> xnx twx thrxx fxur
> say $_; # -> one two three four

11.18. trim / trim-leading / trim-trailing
Removing leading and/or trailing spaces is a common task. So Raku has functions for it:

Function Description

trim Remove leading and trailing spaces

trim-leading Remove leading spaces

trim-trailing Remove trailing spaces

> say "X" ~ " 123 " ~ "X"; # -> X 123 X
> say "X" ~ " 123 ".trim ~ "X"; # -> X123X
> say "X" ~ " 123 ".trim-trailing ~ "X"; # -> X 123X
> say "X" ~ " 123 ".trim-leading ~ "X"; # -> X123 X

I have used them as methods, but they work as a functions as well.

203

Exercise 11.3

Write the Regex versions of trim-leading, trim-trailing and trim:

Method Regex Usage

$y = $x.trim-leading $x ~~ /XXXX/; $y = $0.Str;

$y = $x.trim-trailing $x ~~ /XXXX/; $y = $0.Str;

$y = $x.trim $x ~~ /XXXX/; $y = $0.Str;

11.19. split and grep
Note that split (see section 7.3, “split”) and grep (see section 8.20.1, “grep”) can take a Regex as
argument (instead of a normal string):

my @words = $text.split(/\s/);

This solves the multiple spaces problem we pointed out in section 7.3, “split”.

Any two digit number, where the second one is «2»:

> (1..100).grep: /^(\d)2$/; # -> (12 22 32 42 52 62 72 82 92)

11.20. Comments
We can place comments in Regexes. Inline comments are not supported, as you are encouraged to
use newlines.

Instead of:

"12345" ~~ /(2)(.4)/;

Write it like this:

"12345" ~~ /(2) # A literal "2"
 (.4) # Any character followed by a literal "4"
 /;

204

Chapter 12. Modules
Modules is a useful encapsulation technique, splitting a big task in smaller parts that are easier to
implement - and thus making the whole thing possible.

If somebody else has written a module doing what you need, or a part of it, use that instead of
reinventing the wheel yourself. This will save you time and effort.

The quality and maturity of modules differ quite a lot, and some of them may not be maintained
any more. Which module to use if there are more to choose from is a topic for a book of its own. It
may be better to write the code yourself than using a badly designed module.

12.1. Precompilation
Modules are compiled when they are installed. When a program uses a module, the precompiled
version is loaded - and this speeds up the compilaten of the program.

It is not possible to precompile programs, but you can move the code (or at least
most of it) to one or more modules. You should do this for larger applications, but
not because of any (more or less imaginary) startup speed gains.

12.2. Module Administration with zef
Modules, Administration) You need a module manager to install, list, update and remove modules.
zef is the only module manager that should be used.

 The old module manager panda is not maintained, and should not be used.

12.2.1. zef list

Use the zef list --installed command to get a list of installed modules.

This is a very abridged list:

$ zef list --installed
===> Found via /usr/local/share/perl6/site ①
App::Mi6:ver<0.2.2>:auth<cpan:SKAJI> ②
Bailador:ver<0.0.15>:auth<github:Bailador> ③
Linenoise:ver<0.1.1>:auth<Rob Hoelz> ④
Shell::Command ⑤
p6doc:ver<1.002001> ⑥
zef:ver<0.5.3>:auth<github:ugexe>:api<0> ⑦

① zef tells us where it found the modules.

② A module with a version («ver») and author («auth»), prefixed with a single colon. The author is
a CPAN user name.

205

③ As above, but the author is a github project name.

④ The author as a text string.

⑤ No author or version on this one.

⑥ No author on this one.

⑦ The author is a GitHub user name. Note the new tag «api». We’ll discuss it in the «Advanced
Raku» course.

Modules may have a version (:ver) and author (:auth) part. This makes it possible
to have several versions of a module installed, and you can choose which of them
(or more) to use. (See section 12.3, “Using Modules (use)” for details.)

12.2.2. CPAN vs GitHub

Raku modules was initially hosted on GitHub only, but support for CPAN (the «Comprehensive Perl
Archive Network») was added in 2018.

GitHub is a single server, and the Raku community suffered when it went offline. CPAN is a
distributed network of sites, so problems on a single server will not affect the module repository.

zef supports both GitHub and CPAN. Note that the «auth» field in the module name is just a text
field, so a module can be hosted on CPAN even if the «auth» field uses «github:».

12.2.3. zef search

Use zef search to search for modules with the given string in their name or, description.

E.g. zef search www:

Figure 12. zef search www

The output is rather wide, but here is the last one:

Field Description Value

ID Just an internal counter 4

From Which repository it was found in Zef::Repository::Ecosystems<p6c>

Package The name of the package (module) WWW:ver<1.005003>

Description A short description No-nonsense, simple HTTPS client
with JSON decoder

Note that the local list of available modules is updated first. This step can also be done manually
with zef update.

206

If you installed Raku and zef as root, you will probably have to prefix the zef
commands with sudo: sudo zef ...

12.2.4. zef install

Use zef install to install a module. It will download the specified module, run the tests and install
it if the tests passed. If the module has dependencies (other modules) that isn’t installed, they will
be installed first.

E.g. zef install WWW:

$ zef install WWW
===> Searching for: WWW

It starts with updating the local list of available modules:

===> Updating cpan mirror: https://raw.githubusercontent.com/ugexe/Perl6-
ecosystems/master/cpan1.json
===> Updating p6c mirror: http://ecosystem-api.p6c.org/projects1.json
===> Updated cpan mirror: https://raw.githubusercontent.com/ugexe/Perl6-
ecosystems/master/cpan1.json
===> Updated p6c mirror: http://ecosystem-api.p6c.org/projects1.json

Then it checks for dependencies, recursively:

===> Searching for missing dependencies: HTTP::UserAgent, IO::Socket::SSL
===> Searching for missing dependencies: DateTime::Parse, Encode, IO::Capture::Simple,
Test::Util::ServerPort, OpenSSL

Then it gives a warning for two modules that don’t follow the rules:

===> Extraction: Failed to find a META6.json file for
Encode:ver<0.0.2>:auth<github:sergot> -- failure is likely
===> Extraction: Failed to find a META6.json file for IO::Capture::Simple -- failure
is likely

Then it tests all the modules:

===> Testing: DateTime::Parse:ver<0.9.1>
===> Testing [OK] for DateTime::Parse:ver<0.9.1>
===> Testing: Encode:ver<0.0.2>:auth<github:sergot>
===> Testing [OK] for Encode:ver<0.0.2>:auth<github:sergot>
...

207

And finally installs them:

===> Installing: DateTime::Parse:ver<0.9.1>
===> Installing: Encode:ver<0.0.2>:auth<github:sergot>
===> Installing: OpenSSL:ver<0.1.21>:auth<github:sergot>
===> Installing: IO::Socket::SSL:ver<0.0.1>:auth<github:sergot>
===> Installing: IO::Capture::Simple
===> Installing: Test::Util::ServerPort:ver<0.0.1>:auth<github:jonathanstowe>
===> Installing: HTTP::UserAgent:ver<1.1.46>:auth<github:sergot>
===> Installing: WWW:ver<1.005003>

Note that some modules have many dependencies, and those dependencies may have dependencies
of their own. If one of those dependencies have non-passing tests, nothing will be installed.

Failed tests doesn’t necessarily mean that the module in question is broken, as
Raku is in constant evolution, and module authors may not keep up with every
change. But it may also m,ean exactly that, that the module is broken.

It is possible to force installation even if the tests failed:

zef install --force WWW

But it isn’t a good idea without knowing why the tests failed.

12.2.5. zef depends

Use zef depends for a list of dependencies for a given module. This list is recursive, i.e. it follows the
dependencies of the dependencies and so on.

12.2.6. zef upgrade

Use zef upgrade to upgrade to the newest versions of the specified module(s). Note that this function
is beta.

It will try to upgrade all the installed modules, if used without arguments.

12.2.7. zef uninstall

Use zef uninstall to remove an installed module.

Note that it will only remove what you ask for. Any modules originally installed because of
dependecies will not be affected.

12.2.8. Web Search

zef search isn’t the best way to browse modules. But we can use the Raku Modules website at
https://modules.raku.org/:

208

https://modules.raku.org/

Figure 13. modules.raku.org

Exercise 12.1

Click on some of the tags to get a sense of structure.

Do some searches.

12.3. Using Modules (use)
We tell the prorgram that we’ll use a module with the use keyword:

use DBIish; # Top level namespace
use My::Module; # Two levels of namespaces

If we don’t specify a version, Raku will load the newest one - if there are more than one version
installed. (The notion of «newest» is based on the version number only, so if you have two modules
with the same name (differentiated by the «auth» field) which is legal, the one with the higest
version number will be used. Updating the modules (with zef upgrade) may change what is
considered the newest version.)

If you want to ensure that a specific version of the module is used, specify it like this:

use DBIish:ver<0.5.17>;

Insisting on a specific version that isn’t installed will fail:

209

use DBIish:ver<0.5.18>;
Could not find DBIish:ver<0.5.18> at line 1 in:
 /home/arne/.perl6
 /usr/local/share/perl6/site
 /usr/local/share/perl6/vendor
 /usr/local/share/perl6
 CompUnit::Repository::AbsolutePath«94631019616016»
 CompUnit::Repository::NQP«94631041192904»
 CompUnit::Repository::Perl5«94631041192864»
 in any statement_control at /usr/local/share/nqp/lib/Perl6/Grammar.moarvm line 1

It is helpful in displaying a list of locations for installed modules.

«CompUnit::Repository» mainly handles precompilation. See the «Advanced Raku» course for more
information.

You can check if a module is installed with REPL:

Not installed:

> use Data::TextOrBinary
Could not find Data::TextOrBinary at line 1 in: ...

Installed:

> use WWW
Nil

Or on the command line:

$ raku -MData::TextOrBinary -e "say 'ok';"
===SORRY!===
Could not find Data::TextOrBinaryat line 1 in: ...

$ raku -MWWW -e ""say 'ok';"
ok

You can drop the -e part, but that will give you REPL mode if the module is installed. And you can
use the module:

$ raku -MWWW
>

210

Exercise 12.2

Install the module «Math::Trig» from CPAN, and write a short program using something from it.

12.4. Writing Modules
In chapter Chapter 15, Writing a Module we’ll show how to place modules locally, bypassing the
need for module installation with zef.

In the «Advanced Raku» course we’ll show how to write a module following the rules, so that it can
be uploaded to CPAN for public usage and installation with zef.

211

212

Chapter 13. Files and Directories

13.1. Reading Files
The normal way of reading a file is open it first, read the content, and close the file. We can of
course do that, but we don’t have to.

13.1.1. IO.lines

Use IO.lines on a file name to get the content, as a lazy list of lines.

Read a specified file, and display lines with an «a» in them:

File: echo-file-contains

sub MAIN ($file-name)
{
 for $file-name.IO.lines -> $line
 {
 say $line if $line.contains("a");
 }
}

The implicit filehandle is closed when we have read the entire content of the file.
So beware of situations with early exit of the loop (e.g. a program that looks for a
certain string in the file, and does a last when it is found).

Filehandles are automatically closed when they go out of scope, but in a large
program the end of the scope may be a long way off.

We can use grep (and move contains there) to avoid the loop:

File: echo-file-contains2

sub MAIN ($file-name)
{
 .say for $file-name.IO.lines.grep(*.contains("a"));
}

I have used a loop to get newlines after each line we display, but we can avoid that as well by using
join on the list:

213

File: echo-file-contains3

sub MAIN ($file-name)
{
 $file-name.IO.lines.grep(*.contains("a")).join("\n").say;
}

Remember that we can (and indeed must) ommit the curlies in the grep argument
if the first argument is a Whatever Star.

We could have written it like this instead: grep({.contains("a")}).

Take a little time looking at the three versions. Which of them is easiest to understand? And if you
like another one better, why?

13.1.2. limit

If you are only interested in a certain part of the file, specify the maximum number of lines to read
like this:

> $file-name.IO.lines(10);

13.1.3. IO.words

This is identical to IO.lines, but the content is returned one word at a time (instead of one line at a
time).

Note that words may not do what you want, as descibed in section 7.4, “words”.

13.1.4. lines

We have used lines as a method on an IO-object in the previous sections, but we can use lines as a
procedure without arguments as well. This will read the content of the file(s) specified on the
command line:

File: echo-all

.say for lines;

No need for MAIN, and it will handle as many files as we want:

$ raku echo-all /etc/*

We will get a warning if one or more files is a directory:

214

'NPW18/' is a directory, cannot do '.open' on a directory in block <unit> at echo-all
line 3

Note that used like this we have no way of getting the file names, or when one file ends and the next
begins. (But see section 13.6.1, “$*ARGFILES” for a workaround.)

If we invoke the program without arguments, it will wait for input, and copy it back verbatim. Use
<Control-c> to exit.

We can pipe input to it if we want, and these lines are equal:

$ raku echo-all file1.txt file2.txt
$ cat file.txt file2.txt | raku echo-all

We can make the echo-file-contains3 program shorter:

File: echo-grep

lines.grep(*.contains("a") }).say;

We can use a slurpy array to get them file names:

sub MAIN (*@files)
{
 lines.grep({ .contains("a") }).say;
}

We have added MAIN for the usage message only. The arguments (in @files) are ignored.

Note that the slurpy argument allows zero arguments, so this program will behave
in the same way as «echo-grep». That means that the usage message will never be
triggered (and as such the use of MAIN is useless).

See section 10.14, “* (Slurpy Operator)” for information on how to fix it.

13.2. slurp
Use slurp to read the whole file at once:

> my $content = slurp "/home/raku/bin/echo-file";

All strings in Raku are in Unicode, but it is possible to read (and convert) files with other encodings:

215

> my $contents = slurp "/home/arne/echo.c", enc => "latin1";

More about supported encodings: https://docs.raku.org/routine/encoding

13.3. open / close
We can open the file (with open), do something with it, and close it (with close) afterwards:

This program will read a file specified as argument, and print all the lines containing the letter «a»:

File: echo-file-MAIN

sub MAIN ($file-name)
{
 my $fh = open $file-name;

 for $fh.lines -> $line
 {
 say $line if $line.contains("a");
 }

 $fh.close;
}

13.3.1. lines

I have used lines on an open file handle to read the content, one line at a time.

Exercise 13.1

Write a file conversion program. Input is in latin1 (iso-latin-1), and output is in Unicode (utf-8).

Hint: Do not try writing to a file (as we have not shown how to do that yet). Writing to the screen
(STDOUT) is ok, and we can use the shell to save it for us like this:

$ raku isolatin2unicode isolatinfile > unicodefile

13.4. INPUT OUTPUT - IO
On a Unix-like system we have the following predefined filehandles:

Name Filehandle Description

STDIN $*IN Standard input

216

https://docs.raku.org/routine/encoding

STDOUT $*OUT Standard output

STDERR $*ERR Standard error

13.4.1. note

note prints to STDERR (the same as $*ERR.say). Do not use it on a filehandle!

Without \n With \n To Stringifiction

note *ERR .gist

note may surprise you in REPL:

> note False
False
True

The False output was sendt to STDERR. As nothing was displayed on STDOUT by the code, REPL
displayed the result of the last statement. note was successful (as we haven’t closed STDERR), and
returned True.

13.5. Writing Files
We can expand the file conversion program to write to a file, if given. The first argument to the
program is the file name to read from, as before, and a second one (if given) is the file name to
write to.

If we don’t specify the second argument, it will print to the screen as before:

$ raku isolatin2unicode4 isolatinfile unicodefile
$ raku isolatin2unicode4 isolatinfile > unicodefile

We can use a filehandle, open the file in write mode, and use say on the filhandle:

> my $fh = open :w, '/tmp/some-file.txt';
> $fh.say("Hello");
> $fh.close;

 Note that $fh.say requires parens or colon syntax (e.g. $fh.say: "Hello").

Remember the adverbial syntax (see section 10.13.6, “Adverbs”); :w is the same as w => True.

But we’ll use the spurt command instead. It is the opposite of lines, as it writes all the text we give it
to the specified file.

217

When we create a file, the file permissions is copied from the system umask on
Unix like systems. Windows doesn’t support umask values or file permissions.

It is not possible to change the mode in the open or spurt calls, but see section the
description of chmod in the «Advanced Raku» course.

13.5.1. spurt

Use spurt to write to a file, with automatic open and close.

File: isolatin2unicode4

sub MAIN ($file-in, $file-out = "")
{
 $file-out
 ?? spurt $file-out, slurp $file-in, enc => "latin1"
 !! say slurp $file-in, enc => "latin1";
}

We could have written $file-out = Nil instead, but an empty string is ok.

No error checking of any kind, so what can go wrong?

spurt overwrite

Note that spurt happily overwrites existing files, without warning.

We can instruct it to fail if the file exists:

spurt $out, :createonly, slurp $in, enc => "latin1";

You can add parens if you are confused:

spurt($out, :createonly, slurp($in, enc => "latin1"));

spurt append

spurt also have append mode, where the text is added to the end of an existing file:

spurt $file-out, :append, slurp $file-in, enc => "latin1";

This is useful when writing to log files.

13.5.2. prompt Revisited

prompt, as presented in 6.5.1, “prompt” is the same as $*IN.get with an optional text output.

218

sub prompt-reimplemented ($message = "")
{
 $*OUT.say $message if $message;
 return $*IN.get;
}

File: prompt

my $name = prompt "What's your name? ";
say "Hi, $name! Nice to meet you!";

13.6. get
get reads a single line from the specified filehandle. It returns Nil if no more input is available.

Read one line from standard input:

my $line = $*IN.get;

Read one line from a file:

my $fh = open 'filename';
my $line = $fh.get;
$fh.close;

13.6.1. $*ARGFILES

A standalone get (without using it on a filehandle) behaves just like lines.

It will read from the files given on the command line, and if none are given from
$*IN instead.

The magic is performed by $*ARGFILES behind the scenes.

We can use handles on $*ARGFILES to get a the filehandles for each argument:

File: argfile-handle

say $_ for $*ARGFILES.handles;

Running it:

219

$ raku argfile-handle person args ack6
person -> IO::Handle<"person".IO>(opened)
args -> IO::Handle<"args".IO>(opened)
ack6 -> IO::Handle<"ack6".IO>(opened)

Specifying a non-existing file causes the program to crash:

$ raku argfile-handle person sjsjsjsjsjs
person -> IO::Handle<"person".IO>(opened)
Failed to open file /home/raku/sjsjsjsjsjs: No such file or directory
 in block <unit> at ./argfile-handle line 3

Note that the handles are reported as open, even though they are not - if we try to
read from them. The error message we get if we try to read is «Cannot do 'get' on a
handle in binary mode», and that is wrong.

What actually happens is that the handles are open when the handles method is called, but they are
closed afterwards:

File: argfile-handle2

my @handles = $*ARGFILES.handles;

for @handles { say $_ }

Running it:

$ raku argfile-handle2 person args ack6
IO::Handle<"person".IO>(closed)
IO::Handle<"args".IO>(closed)
IO::Handle<"ack6".IO>(closed)

We can use handles to write a zip program, that takes one line from each file given as argument,
and continues until everything has been written:

220

File: zip-merge

my @handles = $*ARGFILES.handles;

.open for @handles;

while @handles
{
 my $handle = @handles.shift;
 say $handle.get;
 @handles.push($handle) unless $handle.eof;
}

Note that we have to open the files manually for this to work.

$ raku zip-merge person-say3 repeat repeat2

The not-so-subtle naming of the program may help you remembering the zip operator (See the
«Advanced Raku» course.)

We cannot use that, as it would stop when the file with the smallest number of lines is finished. But
we can use the roundrobin operator (Which we’ll cover in the «Advanced Raku» course).

It is extremely hard to get it right, but this one-liner works:

File: roundrobin

$*ARGFILES.handles.eager».open».lines.&roundrobin.flat.map: *.put

>> is a Hyper Operator (Which we’ll cover in the «Advanced Raku» course). It works in parallel on
the elements. I’ll leave it as an exercise to the reader to figure out why it works.

(This code snippet is written by Brad Gilbert. See https://stackoverflow.com/questions/53639771/
perl-6-argfiles-handles-in-binary-mode)

If you use $*ARGFILES inside the special MAIN function, it will read from $*IN. (This
applies to version 6.d (and later).

13.7. Temporary Files
Temporary files should be placed in a suitable location, so as not to clutter a directory with normal
content. A directory meant for temporary files may also employ automatic cleanup from time to
time.

Use normal file operations (create, write, read, remove).

221

https://stackoverflow.com/questions/53639771/perl-6-argfiles-handles-in-binary-mode
https://stackoverflow.com/questions/53639771/perl-6-argfiles-handles-in-binary-mode

13.7.1. tmpdir

Use the $*SPEC.tmpdir or $*TMPDIR dynamic variables to locate the system temporary directory. They
will default to the current directory if the system was unable to locate it.

It is good practice to delete temporary files afterwards, but program crashes or premature
termination may happen before the programs do their clean up.

13.7.2. unlink

Use unlink to remove a file, link or symbolic link. Directories can only be removed with rmdir (see
section 13.10.7, “rmdir”).

> unlink(<A B C D>);
> unlink "A".IO, "B".IO, "C".IO, "D".IO;

Because of file system limitations, the return list includes all files, except those that caused
problems (missing permissions, or a directoy).

As a metod it returns True on success, and a X::IO::Unlink failure otherwise:

> "A".IO.unlink;

Removing a non-existing file gives True.

We can get the error message in this compact way:

> say .exception.message without 'bar'.IO.unlink;
Failed to remove the file […] illegal operation on a directory

13.7.3. getc

Use getc to read a single character from the specified filehandle. The subroutine form defaults to
$*ARGFILES if used without a handle, and that again defaults to STDIN if no files were specified on
the command line.

It returns Nil if no more input is available, and throws an exception if used on a filehandle in
binary mode.

222

File: getc

my $char;

repeat
{
 print "> "; $char = getc;
 say "Character: $char";
}
while $char ne "Q";

It goes in a loop, until we enter the «Q» character.

Running it:

$ raku getc
> asdQw
Character: a
> Character: s
> Character: d
> Character: Q

It doesn’t do anything before we press return, as the terminal is set to Buffered. Then it gets all the
characters, printing the «>» prompt after each one as we can see.

On a Linux system we should have been able to turn off buffering for a program with the stdbuf
command like this:

$ stdbuf --input=0 raku getc

But it doesn’t work, on my computer at least.

Unicode and combining characters (see section 7.1.2, “Combining Characters”) are also an issue, as
they come 'after* the base character. This means that getc will wait for at least two characters,
before returning the first one. If the second one isn’t a combining character, the first one is
returned. If it is a combining character, getc will continue reading characters as long as they all are
combining character (as we can have many of them) - or we encounter the end of the file.

13.7.4. readchars

Use the readchars method to read up to the specfied number of characters (graphemes) from the
filehandle. It will throw an excecption if the filehandle has been opened in binary mode.

223

File: readchars

my $file = $*TMPDIR.add('foo.txt');

$file.IO.spurt: "This is a test...\n" x 25;

given $file.IO.open
{
 say "A:" ~ .readchars: 5; # OUTPUT:
 say "B:" ~ .readchars: 90;
 say "C:" ~ .readchars;
 .close;
 $file.unlink;
}

If we don’t specify the number of characters, an implementation specific number is used. Rakudo
uses $*DEFAULT-READ-ELEMS which is 65536.

13.8. File tests
We really should have added error detection (and recovery) in our programs. Trying to read from a
non-existing file will fail, and terminate the program.

There are quite a few file test we can apply to a file, through an IO-object ("file-name".IO.d), on a
filehandle ($fh.d) or with smartmatch ("file-name".IO ~~ :d):

Method Description Return value Non-existing

d Is it a directory? True/False fail

e Does it exists? True/False False

f Is it a file? True/False fail

l Is it a symlink? True/False fail

r Is it readable? True/False fail

rw Is it readable and writeable? True/False fail

rwx Is it readable, writeable and executable? True/False fail

s File size (in bytes) Integer fail

w Is it writeable? True/False fail

x Is it executable? True/False fail

z File size zero? True/False fail

Most of them will fail (with X::IO::DoesNotExist) if the file doesn’t exist.

Note that s and z can give non-zero results if used on a directory, but this is
depending on the operating system.

Examples (given that the file exists, and that we have done my $fh = "/tmp/A".IO.open first):

224

IO method Filehandle method Smartmatch Result

"/tmp/A".IO.d $fh.d (see note) "/tmp/A".IO ~~ :d False

"/tmp/A".IO.e $fh.e "/tmp/A".IO ~~ :e True

"/tmp/A".IO.f $fh.f "/tmp/A".IO ~~ :f True

"/tmp/A".IO.s $fh.s "/tmp/A".IO ~~ :s 126976

Note that we cannot open a directory, so checking if a filehandle is a directory can never return True.

13.8.1. File Tests in Signatures

Let us revisit «echo-file-contains3» from section 13.1.1, “IO.lines”. If we specify a non-existing file
we get a run time error:

$raku echo-file-contains3 SSSS
Failed to open file /home/raku/SSSS: No such file or directory ...

We can add a type check, and a multi like this:

File: echo-file-contains4

multi sub MAIN ($file-name where $file-name.IO.f)
{
 $file-name.IO.lines.grep(*.contains("a")).join("\n").say;
}

multi sub MAIN (*@args)
{
 say "Oh, no! Please specify one file.";
}

The second multi MAIN cathes situations where we have specified anything else than one argument
that is an existing file.

The error message given by «echo-file-contains3» is quite good, and program termination can be
the right thing to do.

13.9. Binary Files
Newline conversion (see section 6.1, “Newlines”) and Unicode normalization (see section 7.1,
“Unicode”) screws up reading (and writing) of binary files.

When we read in Unicode mode, the program will chocke on illegal sequences. We can avoid that
by using the utf8-c8 encoding, as it passes bytes through unchanged.

But binary files should be read in binary mode:

225

my $buffer = slurp $filename, :bin;

13.9.1. Buf

When we read from a file in binary mode, we get a Buf (Buffer) in return.

We can either use slurp:

my $buffer = slurp $filename, :bin;
for @$buffer { ... }

Or do it manually, with open and read.

read

read reads the specified number of bytes:

if my $fh = open $path, :bin
{
 my Buf $buffer = $fh.read($count);
 my $third_byte = $buffer[2];
}

Note that read works for non-binary files as well, but doing so can cause the breaking up of Unicode
characters.

Hex-dumping a file:

226

File: file-show

constant NL = 9252.chr; # This is the unicode "N/L" symbol
constant BOX = 9617.chr; # This is a unicode gray box

sub MAIN ($file where $file.IO.r)
{
 my $fh = open $file, :bin;

 while my Buf $buf = $fh.read(10)
 {
 my $ascii = "";
 my $elems = @$buf.elems;
 for @$buf -> $byte
 {
 print $byte.fmt("%02X ");
 if $byte eq any(10,13)
 {
 $ascii ~= NL;
 }
 else
 {
 $ascii ~= 31 < $byte < 127 ?? $byte.chr !! BOX;
 }
 }
 print " " x 10 - $elems; # Fill the last line
 say "| $ascii";
 }

 $fh.close;
}

13.9.2. Blob

Binary data can also be stored in a Blob («Binary Large OBject»).

> my $blob = Blob.new([1, 2, 3]);
Blob:0x<01 02 03>

> my $blob = Blob.new([255, 2, 3]);
Blob:0x<ff 02 03>

The values are in the range 0 .. 255. Values outside that range will be truncated (by applying % 256
on them):

> my $blob = Blob.new([256, 2, -1]);
Blob:0x<00 02 ff>

227

We can rewrite «file-show» to use a Blob:

Change this line:

while my Buf $buf = $fh.read(10)

to this:

while my $buf = Blob.new($fh.read(10))

(It is available as «file-show-blob».)

Exercise 13.2

Write a file comparison program. It takes two file names, and does a binary comparison.

Usage:

./file-equal enum-red enum-redX
No such file enum-redX

$ raku file-equal enum-red enum-red
The files are equal

$ raku file-equal enum-red enum-fixed
Files differ (different sizes)

$ raku file-equal hello-usage hello-usage2
Files differ

13.9.3. Writing a Binary File

Writing a binary file with Buf and write:

File: write-buf

unit sub MAIN ($file-name);

if my $fh = open $file-name, :w, :bin
{
 my $buf = Buf.new: 82, 97, 107, 117, 100, 111, 10;
 $fh.write: $buf;
}

228

And as a blob:

File: write-blob

unit sub MAIN ($file-name);

if my $fh = open $file-name, :w, :bin
{
 my $blob = Blob.new: 82, 97, 107, 117, 100, 111, 10;
 $fh.write: $blob;
}

A little test:

$ raku write-buf X1
$ raku write-blob X2
$ raku file-equal X1 X2
The files are equal

write can be used on non-binary files (text files), but this can cause illegal Unicode sequences. Or
illegal sequences in whatever text encoding you want to use. (Note that this can be used to write
text files with encodings not supported by Raku, but it is a better idea to implement the support
instead.)

13.9.4. Detecting Binary Files

There is no built in way of detecting if a file is binary or not, but we can use the module
Data::TextOrBinary.

Install the module Data::TextOrBinary if it isn’t installed alredy. (Possibly with «sudo zef» instead,
depending on your setup):

zef install Data::TextOrBinary

See also section 12.2, “Module Administration with zef”.

229

File: binary

use Data::TextOrBinary;

sub MAIN ($file)
{
 if $file.IO.d
 {
 say "Directory.";
 }
 elsif $file.IO.e
 {
 is-text($file.IO)
 ?? say "Text file."
 !! say "Binary file.";
 }
 else
 {
 say "File doesn't exist.";
 }
}

The module works by reading the first 4096 bytes from the file, and then looking for characters that
doesn’t appear in text files.

We can specify the number of bytes to read with the «test-bytes» argument:

my $text = is-text($filename.IO, test-bytes => 8192);

See https://github.com/jnthn/p6-data-textorbinary for details.

Using it:

$ raku binary axxxx
File doesn't exist.

$ raku binary num-add-err
Text file.

$ raku binary _old/
Directory.

$ raku binary /bin/false
Binary file.

230

https://github.com/jnthn/p6-data-textorbinary

Note that the program may report some pdf files as text (and this book is an
example of that), if the binary content isn’t placed up front. Increasing the test-
bytes value fixes this.

13.10. Directories
Directories are places where we store files. And directories.

13.10.1. %*ENV<PATH>

The most important directories are the path, the «PATH» environment variable, available as
%*ENV<PATH>. It is a string containing a colon separated list of directories where the shell looks for a
program to execute, in the specified order.

> say %*ENV<PATH>;
/home/arne/bin:/home/arne/.local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin
:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

With better formatting:

> say %*ENV<PATH>.split(":").join("\n");
/home/arne/bin
/home/arne/.local/bin
/usr/local/sbin
/usr/local/bin
/usr/sbin
/usr/bin
/sbin
/bin
/usr/games
/usr/local/games
/snap/bin

13.10.2. dir

Use dir without arguments to give us the entire content (without the special directories «.» and «..»)
of the current directory, as a list of IO-objects:

> dir
("src".IO "RakuExplained.html".IO)

We can specify a directory:

231

> chdir "/"
> dir "home"
("home/arne".IO)

> dir "/home"
("/home/arne".IO)

If we give a relative directory (not starting with «/») we get a list realtive to the current directory.

13.10.3. indir

Use the indir command to execute code in the specified directory, with the current directory set to
it.

We can use indir to list all the programs available for us (in the path). The path is not recursive, so
directories inside the directories specified in the path are ignored.

We start with the path, splitting it (on the colon separator) into each part and iterate over it:

for %*ENV<PATH>.split(":") -> $directory
{

Inside the loop we start with skipping non-existing directories, as we are allowed to have junk in
the path (and indeed usually have):

 next unless $directory.IO.d; # Is this a directory?

Then we have a new loop. We use indir on the directory ($directory) and runs the dir command in
it (specified as &dir, a reference). The dir command gives us a list of files (and directories) in this
directory. We add sort to give a sorted list. It is a case sensitive sort, but that’s ok:

 for indir($directory, &dir).sort -> $file
 {

The we skip directories, as we are only looking for files:

 next if $file.d;

And finally we display the file (wuith full path) if it is executable by the current user:

 say "$directory/$file" if $file.x;
 }
}

232

Note that say converts the IO.Path objects to strings for us.

The whole program:

File: list-path

for %*ENV<PATH>.split(":") -> $directory
{
 next unless $directory.IO.d; # Is this a directory?

 for indir($directory, &dir).sort -> $file
 {
 next if $file.d;
 say "$directory/$file" if $file.x;
 }
}

Run it to have a look at the programs available for you.

13.10.4. $*CWD

Raku keeps the current directory in the special $*CWD variable. It is not advisable to change it
manually.

indir does indeed change the value of $*CWD automatically, but will also change it back after
running the command in the specified directory.

Exercise 13.3

The Unix program which gives us the full path for a given program. E.g.:

$ which less
/usr/bin/less

$ which pwd
/bin/pwd

Write this program in Raku (and call it «which6»). Use «list-path» as a starting point.

It should report the first match only.

233

Exercise 13.4

Having duplicate programs (programs with the same name) in your path may indicate a problem,
as the first one (in the path) will be executed - and that may not be the one you want.

Write a program traversing the path, reporting duplicates.

$ raku check-path
fido
- /usr/bin/fido
- /opt/bin/gecco/fido
false
- /bin/false
- /home/raku/fakebin/false

Use «which6» as a starting point.

Note that most shells have several built-in commands that are used instead of similar programs in
the path.

Exercise 13.5

Extend «check-path», comparing the files to see if they are the same. Either a symbolic link, a hard
link, or an exact copy.

Tip: Reuse «file-equal» from Exercise 13.2.

It is ok to assume that we have only two versions of the same program. But if you want to allow
for more than two versions, it is ok to only compare the second and third with the first one.

Sample output (abridged):

$ raku check-path-duplicates
print
- /usr/local/bin/print
- /usr/bin/print - Not equal
touch
- /usr/bin/touch
- /bin/touch - Equal
Found 19 duplicates and 12 different programs.

13.10.5. Recursion with indir

indir can be used recursively, with some care.

234

Here is a program that lists every readable file in every readable directory starting with the current
one, recursively:

File: indir-loop

unit sub MAIN;

my @dirs = ".";

while (@dirs)
{
 check-dir(@dirs.shift);
}

sub check-dir ($dir)
{
 say "Reading dir: $dir";
 for indir($dir, &dir).sort -> $current
 {
 next unless $current.IO.r; # Skip files/directories we cannot read

 $current.IO.d
 ?? @dirs.push("$dir/$current")
 !! say "File: $dir/$current";
 }
}

It sorts the files (and directories), and goes for width first (showing all the files in a directory, before
traversing the directories). We do this with a list of directories to check, and add new ones to the
end when we encounter a new one.

I have chosen to program this as a loop, and not recursively, as I want to list the files before the
directories.

Here we have a recursive version:

235

File: indir-recursive

unit sub MAIN;

check-dir(".");

sub check-dir ($dir)
{
 say "Reading dir: $dir";
 for indir($dir, &dir).sort -> $current
 {
 next unless $current.IO.r; # Skip files/directories we cannot read

 $current.IO.d
 ?? check-dir("$dir/$current")
 !! say "File: $dir/$current";
 }
}

The sorting order is not very nice, but we can fix that by sorting the files before the directories:

 for indir($dir, &dir).sort({ +$^a.IO.d ~ $^a cmp +$^b.IO.d ~ $^b }) -> $current

The sort applies IO.d to the file, and converts the result to a number (0 or 1) with a + prefix. Then it
attachs the file name. The result is that all files are prefixed with «0», and directories with «1». So
we get the files (in sorted order), before the directories (also in sorted order). The output should be
exactly the same as for «indir-loop».

The whole program is available as «indir-recursive2».

Exercise 13.6

The Unix programs «grep» can be used to search for strings in files, but the syntax for the
command line arguments is not user friendly.

The «ack» program was written to make this task easier, and it has features suitable for
programmers. (Look it up, as it really is useful.)

Write a program «ack6» that searches all non-binary files recursively from the current directory,
looking for the specified string.

Tip: Start with «indir-recursive2».

13.10.6. mkdir

Use mkdir to create one directory:

236

> mkdir "misc";
> mkdir "misc".IO;
> "misc".IO.mkdir;

It can take an optional permission argument (or mode), that is best specified in
octal form, e.g. mkdir "misc", 0o777. This value is ignored on Windows.

> mkdir "misc", 0o777;
[a]

Note that the mode value will be OR’ed with the system «umask value», as done
with the «mkdir» program. There is no way to override this.

It can create a path as well (similar to the Unix «mkdir -p» command):

> mkdir "a/b/c/d/e";

13.10.7. rmdir

Use the rmdir function to remove one or more directories. It will only remove empty directories,
and returns a list of diretories actually removed:

> rmdir(<a b c d e>);
[a b]

When used as a method it will return True if it was able to remove the directory, and throw an
X::IO::Rmdir exception if the directory cannot be removed.

> "a".IO.rmdir; # -> True
> "c".IO.rmdir; # -> Failed to remove the directory ...

237

238

Chapter 14. Date and Time
Raku has very good built in support for dates and times.

14.1. time
Use time to get the time in whole seconds since 1.1.1970 (the beginning of time in Unix, also known
as the Epoch):

> time; # -> 1542530698

The returned value is an Int.

This is the traditional Unix way of doing it, and it has been standardised by POSIX.

One second is a long time compared with CPU cycles, so it is pretty useless when timing code.

14.2. now
Use now to get the current time in seconds (with a fractional part) since 1.1.1970:

> now; # -> Instant:1532015558.371171

The returned value is an object of type Instant.

14.3. Leap Seconds
If you care about leap seconds, note that now handles them, and time does not.

Leap Seconds are «extra» seconds that are inserted from time to time to correct for discrepancies.

The result is a slight difference between the values used by time and now. We can actually show it:

> say "{ time } - { now }";
1542532489 - Instant:1542532526.274499

> say "{ time } - { now.Int }";
1542532500 - 1542532537

It looks like we have a 37 second discrepancy. Let us make sure:

239

File: time-leap

my $diff; # We add all the differences

for ^100
{
 my $time = time;
 my $now = now;

 $diff += ($now.Int - $time)
}

say "Number of leap seconds added after 1.1.1970: " ~ round($diff.sum/100);

I run the loop a 100 times to avoid the problem of time getting one value, and now getting the next
second.

$ raku /time-leap
Number of leap seconds added after 1.1.1970: 37

If you want to know more about POSIX time (and its absence of leap seconds) start
here: https://en.wikipedia.org/wiki/Unix_time

If you don’t want to care, that’s fine. As long as you do not compare values from
time and now with each other!

14.4. Instant
Note that we must have an Instant object (and not a POSIX time value) if we want to deduce dates
and such things from it.

14.4.1. Date

Use the Date method to get a Date object from an Instant.

A Date object stringifies to a date string with year, month and day like this:

> say now.Date; # -> 2018-11-18
> say Date.today; # -> 2018-11-18

The year uses 4 digits, and the month and day 2 digits each.

We can make a Date object for any date by specifying it as a string, an array of `Int`s or a list of
named arguments:

240

https://en.wikipedia.org/wiki/Unix_time

> my $date = Date.new("2018-10-01");
> my $date = Date.new(2018, 10, 1);
> my $date = Date.new(year => 2018, month => 12, day => 10);

There are a lot of methods we can use on Date objects. This is the most useful (and we start with my
$d = Date.new(2018,10,1)):

Method Result Description

year 2018 The year

month 10 The month (1..12)

day 1 The day of the month (1..31)

is-leap-year False 2018 is not a leap year

day-of-month 1 The same as day

day-of-week 1 The day in the week (1=Monday .. 7=Sunday)

day-of-year 274 The 274th day of the year

days-in-month 31 The number of days in the month

week-number 40 The week number (1..53)

week-year 2018 The year that the week number belongs to (see note below)

week (2018 40) A list with week-year and week-number

weekday-of-month 1 The number of times this day has occured this month
(including this one)

yyyy-mm-dd 2018-10-01 The same as Str and gist

A week spanning two years belongs to the year that has most of it (or that has the
Thursday). The week may belong to the previous year (in January) or the next year
(in December):

> Date.new(2017,1,1).week; # -> (2016 52)
> Date.new(2018,12,31).week; # -> (2019 1)

The following methods returns a new Date object (and we start with my $d = Date.new(2018,10,10)):

Method Result Description

earlier(days => 2) 2018-10-08 Subtract the given number of days

earlier(week => 1) 2018-10-01 Subtract the given number of weeks

earlier(month => 2) 2018-08-10 Subtract the given number of months

earlier(year => 2) 2016-10-11 Subtract the given number of years

later(days => 2) 2018-10-12 Add the given number of days

later(week => 1) 2018-10-17 Add the given number of weeks

later(month => 2) 2018-12-10 Add the given number of months

241

later(year => 2) 2020-10-10 Add the given number of years

truncated-to('year') 2018-01-01 Truncate to the first day of the year

truncated-to('month') 2018-10-01 Truncate to the first day of the month

truncated-to('week') 2018-01-08 Truncate to the first day of the week

succ 2018-10-11 The next day

pred 2018-10-09 The previous day

The argument to earlier and later can be given in singular or plural form: (day or
days, week or weeks, month or months, year or years).

The methods taking an argument takes only one, but they can be stacked:

> my $date = Date.new(2018,10,10).later(years => 10).later(days => 4);

Exercise 14.1

The Unix command «cal» shows the current month if invoked
without arguments. The current date is highlighted.

Implement it, as «cal6». Don’t support arguments, and skip the
highlighting.

Sunday is supposed to be the seventh day of the week, so fix that
at the same time.

 January 2019
Su Mo Tu We Th Fr Sa
 1 2 3 4 5
 6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

Exercise 14.2

Extend «cal6» so that it takes optional values for month and year. E.g.

$ raku cal6-param --month=2 --year=2020

14.4.2. DateTime

A DateTime object has the date (as a Date object) and in addition fields for second, minute and hour.
The time is kept in UTC format (formerly known as GMT, or UK standard time) internally.

We can get a new DateTime object for the current time with DateTime.now - or an Instant object (with
the now function):

242

> say DateTime.now; # -> 2018-11-18T23:46:22.609982+01:00
> say now.DateTime; # -> 2018-11-18T22:46:22.609982Z

If we print the values, we get different results, as shown above. The time is the same, but the way
they are shown differ. We’ll get back to that (time zones).

First we’ll take a look at the DateTime constructor:

my $date-time = DateTime.new(year => 2018,
 month => 10,
 day => 20,
 hour => 16,
 minute => 1,
 second => 10);

my Date $date = Date.now;
my $date-time2 = DateTime.new($date, hour => 16,
 minute => 1,
 second => 10);

my $date-time3 = DateTime.new(now); # An Instant object
my $date-time4 = DateTime.new(time); # An integer

my $date-time5 = DateTime.new("2018-11-18T23:46:22.609982+01:00");
my $date-time6 = DateTime.new("2018-11-18T22:46:22.609982Z");

Note that the seconds are the only field that can have a fractional part.

The date part is on the same format as for the Date object: «year-month-date» (with 4, 2 and 2
digits). Then a «T» before the time part. The time part: «hour:minute:seconds» (with 2, 2 and 2
digits). The seconds can have a fractional part as well. And the last part is the time zone. It is either
the letter «Z» (as in «Zulu») indicating UTC - or a description of the timezone as an offset
«hours:minutes» (2 and 2 digits). The time is shown in the local time zone, and we can get the UTC
time by subtracting this difference

DateTime objects support the same methods as Date objects (the two tables in section 14.4.1, “Date”),
as well as (and we start with DateTime.new("2018-11-18T23:46:22.609982+01:00")):

Method Result Description

hour 22 The hour

minute 46 The minutes

second 22.609982 The seconds, with fraction if any

whole-second 22 The seconds, truncated to an integer

timezone 3600 The time zone, as offset from UTC in seconds

offset 3600 The same as timezone

243

offset-in-minutes 60 The time zone, as offset from UTC in minutes

offset-in-hours 1 The time zone, as offset from UTC in hours

Str 2018-11-
18T23:46:22.609982
+01:00

The date and time as a string

Instant Instant An Instant object representing the time and date

posix Int The POSIX value (seconds since 1.1.1970)

Date Date The date part of the object. Beware of time zones

utc DateTime A new DateTime object, with the time zone set to UTC

in-timezone DateTime A new DateTime object, in the specified time zone

local DateTime A new DateTime object, with the local time zone

In addition to extended parameter support for these:

Method Result Description

earlier(second => 2) 2018-11-18T23:46:20.609982+01:00 Subtract the given number
of seconds

earlier(minute => 2) 2018-11-18T23:44:22.609982+01:00 Subtract the given number
of minutes

earlier(hour => 2) 2018-11-18T21:46:22.609982+01:00 Subtract the given number
of hours

later(second => 2) 2018-11-18T23:46:24.609982+01:00 Add the given number of
seconds

later(minute => 2) 2018-11-18T23:48:22.609982+01:00 Add the given number of
minutes

later(hour => 2) 2018-11-19T01:46:22.609982+01:00 Add the given number of
hours

truncated-to('second') 2018-11-18T23:46:22+01:00 Truncate to whole seconds

truncated-to('minute') 2018-11-18T23:46:00+01:00 Truncate to whole minutes

truncated-to('hour') 2018-11-18T23:00:00+01:00 Truncate to whole hours

truncated-to('day') 2018-11-18T00:00:00+01:00 Truncate to whole days

The value 2 is just an example.

The argument to earlier and later can be given in singular or plural form: (second
or seconds, minute or minutes, hour or hours, day or days, week or weeks, month
or months, year or years).

We also have clone that gives a copy of the DateTime object, with new values for the specified fields
(if any). The fields are the same as for the new call:

> my $much-later = DateTime.now.clone(year => 2045);

244

14.4.3. Time Zones

The new constructor takes an optional argument timezone => <seconds>, where we specify the time
zone as offset from UTC (or GMT) in seconds. If we don’t specify it, the value of the dynamic
variable $*TZ («Time Zone») is used.

> say $*TZ; # -> 3600 (in Oslo, Norway)

Note that DateTime.now adds the time zone for us, but now.DateTime does not.

14.4.4. Custom Formatter

We can also specify a custom formatter when we use DateTime.new or DateTime.now. Its job is to
format the date and time when it is stringified:

File: datetime

sub custom-formatter (DateTime $dt)
{
 sprintf '%02d.%02d.%04d %02d:%02d:%02d', $dt.day, $dt.month, $dt.year, $dt.hour,
$dt.minute, $dt.whole-second;
}

say DateTime.now;
say DateTime.now(formatter => &custom-formatter);
say DateTime.now(formatter => &custom-formatter).later(year => 1);

Running it shows that the custom formatter is inherited by the new object:

$ raku datetime
2018-11-20T12:18:36.963003+01:00
20.11.2018 12:18:36
20.11.2019 12:18:36

14.4.5. From POSIX to Instant

We can get from a POSIX value to an Instant:

> my $intant = Instant.from-posix: $posix-time;

We could have used this fact in «time-leap»:

245

File: time-leap2

my $time = time;
my $now = Instant.from-posix: $time;

say "Number of leap seconds added after 1.1.1970: " ~ $now.Int - $time;

And we get the same result as previously in this chapter:

$ raku text/code/time-leap2
Number of leap seconds added after 1.1.1970: 37

14.5. Timing
We can time the execution of a program or a part of it.

14.5.1. Timing Programs

On a Unix-like systems we can use the «time» program to see how long it takes to run a program:

$ time raku random-prime 10
7

real 0m0,138s
user 0m0,164s
sys 0m0,031s

$ time raku random-prime 10000
8089

real 0m1,419s
user 0m1,458s
sys 0m0,024s

(The «real» value is the actual time, «user» is the part of this used by the compiler, and «sys» is the
time used in system calls (in the operating system).)

The «random-prime» program was introduced in section 10.14.2, “Random Primes
Revisited”. The important point is that the higher number you give as argument,
the longer time it takes to finish.

Note that we time everything; the starting up of raku, reading the source file (and any modules),
compiling the program and finally executing it.

The actual values will differ each time you run the program, depending on what else is going on at
the same time. Another computer can give quite different values, so be careful with comparisons.

246

This method isn’t very useful when we want to compare things.

14.5.2. Timing Code

We can time the execution of code inside the compiler itself:

my $start = now;
do-something;
say "Time used: { $start - now }";

If we are only going to time one block, we can write this as:

do-something;
say "Time used: { now - INIT now }";

INIT is a program execution phaser (or a block) that is executed just after the
program has been compiled, and before it is executed.

We can use phasers to execute code automatically at different times. There are
quite a lot of them. See https://docs.raku.org/language/phasers for details.

As when using «time», the code should be timed several times, as the running times will differ. The
actual values are not very useful, but they can be compared with other values - and used to
compare different implementations.

We can make a function of it:

File: time-me (partial)

sub time-me (&code, $iterations = 100)
{
 my @time;

 for ^$iterations
 {
 my $start = now;
 &code();
 my $stop = now;
 @time.push($stop - $start);
 }

 return @time.sum / @time.elems;
}

Then some tests, where we increment an anonymous state variable (which we will decribe in
section 16.6.2, “$ / @ / % (Anonymous State Variable)”. They keep their value between calls,
essentially working as counters in this code:

247

https://docs.raku.org/language/phasers

sub a
{
 $++ for 10000;
}

sub b
{
 ++$ for 10000;
}

say "a: " ~ time-me(&a, 10000);
say "b: " ~ time-me(&b, 10000);

Running it:

> $raku time-me
a:4.481019762283224e-05
b:4.395750332005312e-05

Scientific notation is hard to read, especially to compare. So we add an optional multiplier:

sub time-me (&code, $iterations = 100, $multiplier = 1)

return $multiplier * @time.sum / @time.elems;

say "a:" ~ time-me(&a, 10000, 1000);
say "b:" ~ time-me(&b, 10000, 1000);

Running it gives much nicer (human readable) values:

$ raku time-me
a:0.044137168141592915
b:0.04315050652893645

We now have a very basic timing framework. We could turn it into a module, and indeed we shall.
In Chapter 15, Writing a Module.

248

Chapter 15. Writing a Module
We made a very basic timing framework in section 14.5.2, “Timing Code”. We can turn it into a
module, but that would have reinvented the wheel as there already are two modules available
doing this:

• Test::Performance

• Benchmark

But we’ll do it anyway…

15.1. unit module
The normal way of specifying a module is just using the module keyword followed by a block:

module xxxx
{
 # Code here;
}

But we can save one block level by using unit module instead:

unit module xxxx;
Code here;

Just as when we specify a procedure (see 10.9.1, “unit procedure”) or a class (see 17.12.2, “unit
class”) .

15.2. is export
We have to mark the procedures we want to make available for external use with is export after
the signature:

sub time-me (&code, :$iterations = 100, :$multiplier = 1) is export { ... }

15.3. pm6
Raku modules have the filename extention «pm6» (as in «Perl Module 6». The language rename to
Raku will have an impact on this and other filename extensions.) Note that «pm» was used as well
in the past, and some older modules may still do so. It is recommended to use «pm6» only, as that
will give a nicer error message if someony tries to use the module from Perl 5.

249

File: lib/Time-Code.pm6

use v6.c;

unit module Time-Code;

sub time-me (&code, :$iterations = 100, :$multiplier = 1) is export
{
 my @time;

 for ^$iterations
 {
 my $start = now;
 &code();
 my $stop = now;
 @time.push($stop - $start);
 }

 return $multiplier * @time.sum / @time.elems;
}

15.4. use lib
Use use lib to specify additional locations where the compiler should look for modules.

It is normal (and recommended) to use e.g. use lib "lib" while developing a module, as that makes
it easier to test it on the fly. (The test framework, which we’ll discuss later, uses this technique as
zef runs the tests before installing the module (and wouldn’t fint the module otherwise).

You have to run the program from the directory where «lib» is located for this to
work.

Note that this can be a security problem, if you run the program from another
location, where you have a «lib» directory as well:

$ pwd # -> /home/raku
$ raku code/chapter12/check-path

If the «check-path» program has a use lib "lib" statement, it will tell the compiler
to look in the «/home/raku/lib» directory (and not «/home/raku/code/chapter12»).

And a program using it (also from section 14.5.2, “Timing Code”):

250

File: time-me-module

use lib "lib";
use Time-Code;

sub a
{
 $++ for 10000;
}

sub b
{
 ++$ for 10000;
}

my $iterations = 1000;
my $multiplier = 1000;

say "a: " ~ time-me(&a, :$iterations, :$multiplier);
say "b: " ~ time-me(&b, :$iterations, :$multiplier);

Running it, and the old version without a module:

$ raku time-me-module
a: 0.04731108696221918
b: 0.04730277517929529

$raku time-me
a: 0.04462623946451714
b: 0.0447062423500612

The module version of the timing framework is slightly slower (about 5%).

15.5. Timing Fibonacci
We can time the Fibonacci Number procedures (see section 10.12.2, “The Fibonacci Numbers”) and
the Sequence (see section 16.3.1, “The Fibonacci Sequence”).

251

File: fibonacci-time

use lib "lib";
use Time-Code;

my $fibonacci := (1, 1, { $^a + $^b } ... Inf);

sub MAIN (Int $n, :$iterations = 100, :$multiplier = 1)
{
 say "Fib $n: " ~ time-me({ &fibonacci($n) }, :$iterations, :$multiplier);
 say "Fib Rec $n: " ~ time-me({ &fibonacci-recursive($n) }, :$iterations,
:$multiplier);
 say "Fib Mul $n: " ~ time-me({ &fibonacci-multi($n) }, :$iterations, :$multiplier);
 say "Fib Seq $n: " ~ time-me({ $fibonacci[$n] }, :$iterations, :$multiplier);
}

sub fibonacci (Int $n)
{
 return 1 if $n == 1 or $n == 2;

 my @fib = (1, 1);

 for 2 .. $n -1 -> $i
 {
 @fib[$i] = @fib[$i -1] + @fib[$i -2]
 }

 return @fib.tail;
}

sub fibonacci-recursive (Int $n)
{
 return 1 if $n == 1 or $n == 2;

 return fibonacci-recursive($n-1) + fibonacci-recursive($n-2)
}

multi fibonacci-multi (1) { 1 }
multi fibonacci-multi (2) { 1 }
multi fibonacci-multi (Int $n where $n > 2)
{
 fibonacci-multi($n - 2) + fibonacci-multi($n - 1)
}

$ raku fibonacci-time --mul=1000 12
Fib 12: 0.17109426818938775
Fib Rec 12: 0.28062656376560663
Fib Mul 12: 4.763127095776541
Fib Seq 12: 0.05405135328930629

252

Computing the twelfth Fibonacci number takes almost the same time with a loop and with
recursion. The multi version is way slower.

And the Sequence is blindingly fast in comparison. (But the problem is that we run the timing 100
times, and the last 99 of them we retrieve a cached value from the Sequence.)

We can run the code one time:

$ raku fibonacci-time --mul=1000 --iter=1 12
Fib 12: 1.686145939074689
Fib Rec 12: 0.8542231594091491
Fib Mul 12: 8.122685764523933
Fib Seq 12: 1.4559518704264895

Do not trust these numbers (the recursive version is suddenly faster than the loop version), as we
ran the code only once. But the Sequence version got a more realistic timing.

$ raku fibonacci-time --mul=1000 20
Fib 20: 0.19579672840493245
Fib Rec 20: 7.5705065387054296
Fib Mul 20: 220.8083508932559
Fib Seq 20: 0.06156730344760013

When we compute the 20th number, the recursive version slows down considerably, and the multi
version is even slower.

Exercise 15.1

Why is the recursive version slower than the loop version?

Note that the timing module doesn’t return or show the returned value from the
procedure we are timing. So run the code normally as well, to make certain that
the value returned is correct (or at least that we get the same error for all of them -
so that they are equally wrong).

15.6. Dictionaries
In this section you will need a dictionary of legal words. Ubuntu Linux has the following
dictionaries:

• /usr/share/dict/american-english (the «wamerican» package)

• /usr/share/dict/british-english (the «wenglish» package)

• /usr/share/dict/ngerman (the «wngerman» package)

253

The english dictionaries have entries like «Abe’s» that we’ll ignore, as they contain non-word
characters.

Locate and download a dictionary file if you don’t have one installed. It must be a text file, with one
word per line. It doesn’t matter which language you choose, as long as you are familiar with the
chosen language.

Exercise 15.2

Write a module «Dictionary» that loads a specified dictionary file (with full path), and returns a
hash of all the words.

Write a short test program.

«A palindrome is a word, number, phrase, or other sequence of characters which reads the same
backward as forward, such as madam or racecar or the number 10801.» (Source:
https://en.wikipedia.org/wiki/Palindrome)

Exercise 15.3

Write a program using the «Dictionary» module that prints the palindromes in the dictionary.

Exercise 15.4

Write a program using the «Dictionary» module that checks if the reverse version of every word in
the dictionary is also a valid word.

«An anagram is a word or phrase formed by rearranging the letters of a different word or phrase,
typically using all the original letters exactly once. For example, the word anagram can be
rearranged into nag a ram, or the word binary into brainy.» (Source: https://en.wikipedia.org/wiki/
Anagram)

Exercise 15.5

Write a program using the «Dictionary» module that checks for anagrams of the word specified as
argument to the program.

254

https://en.wikipedia.org/wiki/Palindrome
https://en.wikipedia.org/wiki/Anagram
https://en.wikipedia.org/wiki/Anagram

Exercise 15.6

It is easy to rewrite the anagram checking program to check all the words in the dictionary,
instead of a single one given as argument.

Is that a good idea?

255

256

Chapter 16. Ranges and Sequences
Read the introduction to Ranges in section 4.2, “Ranges (A Short Introduction)” if you haven’t done
so already.

A Range is rather limited, but a Sequence has (almost) no limitations.

16.1. Ranges
The Range Operator .. gives a range of consecutive increasing integers:

> say (1 .. 5).WHAT; # -> (Range)
> say (1 .. 5); # -> 1..5

16.1.1. Lazy vs Eager

Values are normally calculated when we define them. Raku calls this «Eager», and adds a second
type called «Lazy».

Lazy data structures consist of values of some kind, but the individual values are not calculated
until they are actually needed (as in accessed).

Ranges (and Sequences, which we’ll present shortly) are lazy, so values will not be calculated until
they are actually needed.

This makes it possible to have an endless (or infinite) Range:

> say (1 .. Inf).WHAT; # -> (Range)

16.1.2. is-lazy

Use is-lazy if you are unsure if a value, variable or data structure is lazy or eager:

> say (1 .. Inf).is-lazy; # -> True
> say "A String".is-lazy; # -> False

If we assign a Range to an array, it will be evaluated:

> my @range = 1 .. 10; # -> [1 2 3 4 5 6 7 8 9 10]
> say @range.is-lazy; # -> False
> say @range.WHAT; # > (Array)

We can try with the infinite Range:

257

> my @range = 1 .. Inf; # -> [...]
> say @range.WHAT; # -> (Array)
> say @range.is-lazy; # -> True

This gives a lazy list. This is the default only when it cannot be eager.

It is also possible to force an expression to be lazy, with the lazy keyword.

16.2. lazy
Use the lazy keyword to force an expression to be lazy.

It can be used on almost anything, but a loop is the most useful construct.

File: lazy

my $numbers := lazy for ^Inf { $_ };

say $numbers[0];
say $numbers[10];

.say for $numbers;

This gives us an infinite loop. The counter variable (from 0 to Inf) is - as usual - available in the
block as $_. The last expression inside the block is the value in the lazy list.

This would make more sense if we did something inside the block, e.g. like: { "dummy$_" } or { pi *
$_ - e }.

 See 16.7.1, “lazy vs gather/take” for a more complicated example.

16.2.1. infinite

We can use infinite to check if a Range is infinite, or rather that the start and/or end was declared
infinite (with Inf, * or ∞):

> say (1 .. Inf).infinite; # True

Note that we cannot use infinite on @array, as it is coerced to a list when we assign it.

16.2.2. List Coersion

We can coerce a Range to a List:

258

> say (1 .. Inf).WHAT; # -> (Range)
> say (1 .. Inf).List.WHAT; # -> (List)
> say (1 .. Inf).List.is-lazy; # -> True
> say (1 .. 100).is-lazy; # -> False
> say (1 .. 100).List.is-lazy; # -> False

16.2.3. eager

Use eager to force the values in Range (or Sequence or a lazy List) to be calculated. It will return the
values as a list.

> (1 .. Inf).eager

This works (or hangs, depending on your point of view). The expression will run forever, without
any visible result.

Exercise 16.1 If we sit down and wait for the infinite list to crash, what would happen first:

• out of memory (too many elements in the array)?

• value too large for an integer?

16.2.4. is-int

Use is-int (implemented for Ranges only!) to tell us if the Range contains integers only:

> say (1 .. 10).is-int; # -> True
> say ('A' .. 'Z').is-int; # -> False

16.2.5. Ranges on Strings

This works:

> .print for ("a" .. "z"); say ""; # Add a newline at the end.
abcdefghijklmnopqrstuvwxyz

Or characters:

> say ("aa" .. "bb").WHAT; # -> (Range)
> say ("aa" .. "bb").eager; # -> (aa ab ba bb)

Did you expect "aa" .. "az", "ba", "bb" ?

259

The range operator doesn’t now about letters. Everything is a Unicode character, so it will give you
exactly what you ask for. (It iterates the first character until reaching the target, then it does the
same wuth the seond, and so on.)

Note that Raku’s idea of how to count from «aa» to «bb» may not suit your needs.

16.2.6. minmax

It is also possible to construct a Range with the «minmax» operator.

It takes two values, and returns a Range starting from the lowest to the highest of the values,
regardless of the given order:

numeric comparison
10 minmax 3; # 3..10

string comparison
'10' minmax '3'; # "10".."3"
'z' minmax 'k'; # "k".."z"

The order is decided with the «cmp» operator.

If the lowest and highest values coincide, the operator returns a Range made by the same value:

1 minmax 1; # 1..1

When applied to Lists, the operator evaluates the lowest and highest values among all available
values:

(10,20,30) minmax (0,11,22,33); # 0..33
('a','b','z') minmax ('c','d','w'); # "a".."z"

Similarly, when applied to Hashes, it performs a cmp way comparison:

my %winner = points => 30, misses => 10;
my %loser = points => 20, misses => 10;
%winner cmp %loser; # More
%winner minmax %loser;
${:misses(10), :points(20)}..${:misses(10), :points(30)}

16.3. Sequences
Seqences are generated with ..., as opposed to .. that generates ranges.

260

> say (1 .. Inf).WHAT; # -> (Range)
> say (1 .. Inf)[^10]; # -> (1 2 3 4 5 6 7 8 9 10)

> say (1 ... Inf).WHAT; # -> (Seq)
> say (1 ... Inf)[^10]; # -> (1 2 3 4 5 6 7 8 9 10)

Every range you can construct in Raku can also be made as a sequence, but not the
other way round.

Sequences (and Ranges) are lazy. The values will only be calculated when needed.

> say (1..10).WHAT; # -> (Range)
> say (1..10).reverse; # -> (10 9 8 7 6 5 4 3 2 1)
> say (1..10).reverse.WHAT; # -> (Seq)

Raku can generate sequences for us:

> (1, {$_ * 2} ... *)[^10]; # -> (1 2 4 8 16 32 64 128 256 512)
> (2, {$_ - 2} ... *)[^10]; # -> (2 0 -2 -4 -6 -8 -10 -12 -14 -16)

Or we can give it enough values to understand the pattern:

> (1, 2, 4 ... Inf)[^10]; # -> (1 2 4 8 16 32 64 128 256 512)
> (2, 4 ... Inf)[^10]; # -> (2 4 6 8 10 12 14 16 18)
> (2, 0 ... -Inf)[^10]; # -> (2 0 -2 -4 -6 -8 -10 -12 -14 -16)
> (1 ... -10)[^10]; # -> (1 0 -1 -2 -3 -4 -5 -6 -7 -8)

16.3.1. The Fibonacci Sequence

We can have pretty advanced rules for generating the values.

Remember the Fibonacci Numbers (from section 10.12.2, “The Fibonacci Numbers”)? Here they are
as a Sequence:

> say (1, 1, * + * ... *)[^10]; # -> (1 1 2 3 5 8 13 21 34 55)
> say (1, 1, { $^a + $^b } ... Inf)[^10]; # -> (1 1 2 3 5 8 13 21 34 55)

The * + parts means that the third value is computed with two placeholder values and adding
them together. The placeholders are to the left of the current value, so in this case the first
and second value (and that is why they must be specified explicitly). The … * part means that

this will go on forever (and here is the same as Inf).

The second example uses explicit placeholder variables, and here we can do almost anything with
the values.

261

16.3.2. Binding vs Assignment

It is recommended to use binding (:=), and not the usual assignment (=) on sequences.

> my $fibonacci := 0, 1, * + * ... *;
> say $fibonacci.is-lazy; # -> True
> say $fibonacci[10]; # -> 55

The Fibonacci sequence can either start with 1, as we have done until now, or with 0. The
mathematicians disagree about what is correct. 1 is the most usual start value though.

Binding only works for scalars. If you want the variable to look like an array, use assignment:

> my @fibonacci = 0, 1, * + * ... *;
> @fibonacci.is-lazy
True

> @fibonacci[10]
55

Binding works better on lazy data structures (as sequences), as assignment may cause the data
structure to be evaluated (or be «un-lazified» so to speak).

If you wonder. This is legal (but not a good idea):

> my $a = (1..10)
1..10

> $a[8]
9

The list (or range in this case) will be read only.

16.3.3. lazy

Use lazy to force a Range (or Sequence) to stay lazy as long as possible:

> my @range = (1 .. 10);
(1 2 3 4 5 6 7 8 9 10)

> my @range = (1 .. 10).lazy;
[...]

Note that the assignment to an array causes the Range to be evaluated. Assign it to a scalar to avoid
that:

262

> my $range = (1 .. 10);
1..10

> $range.WHAT;
(Range)

Summary:

Eager Data type Lazy Data type

my @x = (1 .. 10)

my @x = (1 ... 10)

my $x = (1 .. 10)

my $x = (1 ... 10)

my $x := (1 .. 10)

my $x := (1 ... 10)

Infinite ranges and sequences are always lazy. So if we change 10 with Inf, everything would end
up in the «Lazy Data type» column.

16.3.4. Memory Friendly

The memory footprint of an infinite Ranges and Sequences is low, as it will only generate the values
as needed:

> say (1..Inf)[10] # Parens required, as «Inf[10]» isn't a thing.
9

Note that pick on a lazy Range (or List or Sequence) forces it to be evaluated. This will not work if it
is infinite:

> (1 .. Inf).pick; # -> Nil

No luck!

16.3.5. A Flip-Flop Sequence

Is it possible to make a flip-flop sequence? Something that changes its mind each time we ask it
about something?

Raku has a flip-flop operator called ff and a variant called fff. They will be
covered in the «Advanced Raku» course. They do not have the same meaning as
what we describe here.

263

> my $flip-flop := (True, False, !* ... *);

> (True, False, !* ... *)[^10]
(True False True False True False True False True False)

Or this:

> my $flip-flop := (True, {! $_ } ... *);

This sequence will never reach infinity (or rather; "never tries to reach inifinity"), but the generator
works even so:

> my $i = 0;
> say "I like potatos: " ~ $flip-flop[$i++] for ^10;

We cannot use shift on a sequence, only iterate:

File: flip-flop-sequence

my $flip-flop := (True, False, !* ... *);

say "I like potatos: $_." for $flip-flop

> raku flip-flop-sequence
I like potatos: True.
I like potatos: False.
I like potatos: True.
I like potatos: False.
...

The program will run forever. Use <Control-c> to stop it.

16.3.6. List Repetition Operator and Sequences

We can get the same Sequence with the List Repetition Operator xx (see section 8.19, “xx (List
Repetition Operator)”) when used like this:

> my $flip-flop = |(True, False) xx *

> $flip-flop.WHAT
(Seq)

> $flip-flop.is-lazy
True

264

The | before the list to flatten it is essential, as we otherwise would get an infinite list of sublists
with (True, False).

16.4. state
A state variable declared with state (instead of the normal my).

It is only initialised the first time the program comes to the state line, and this line will be ignored
after that so that it keeps the old value.

We can implement Flip.Flop with a state variable, and wrap everything in a procedure.

We can access the Flip-Flop Sequence through a procedure keeping track of the index. The
initialization of a state variable is only done once, and it will keep the value between calls:

File: flip-flop-sequence-wrapped

my $flip-flop := (True, False, !* ... *);

sub flip-flop
{
 state $index = 0; # Only executed once!
 return $flip-flop[$index++];
}

say flip-flop for ^10;

We don’t need the sequence at all:

File: flip-flop-procedure

sub flip-flop
{
 state $state = False; # Only executed once!
 $state = ! $state;
 return $state;
}

say flip-flop for ^10;

16.5. Truly Random Flip-Flop
The first version of «flip-flop» is predictable, as it always starts with True.

It is easy to fix that, so that it is completely random if the first value is True or False:

265

File: flip-flop-procedure2

sub flip-flop
{
 state $state = (True, False).pick; # Only executed once!
 $state = ! $state;
 return $state;
}

say flip-flop for ^10;

16.6. Flip-Flop Problems
«flip-flop» behaves as expected if used in one context. Example of the opposite:

File: flip-flop-problems

sub flip-flop
{
 state $state = (True, False).pick; # Only executed once!
 $state = ! $state;
 return $state;
}

sub free-lunch
{
 say "I'm { flip-flop() ?? "for" !! "against" } free lunches";
}

sub free-dinner
{
 say "I'm { flip-flop() ?? "for" !! "against" } free dinners";
}

for ^5
{
 free-dinner;
 free-lunch;
}

266

I'm against free dinners
I'm for free lunches
I'm against free dinners
I'm for free lunches
I'm against free dinners
I'm for free lunches
I'm against free dinners
I'm for free lunches
I'm against free dinners
I'm for free lunches

The program doesn’t change position at all, but is against free dinners, and for free lunches all the
time.

Suggestions?

16.6.1. Flip-Flop Redesign

A complete redesign is needed.

The obvious approach is to make a class, and use instances (objects) of that class.

We’ll do just that, in the next chapter.

(We are not finished with ranges yet.)

16.6.2. $ / @ / % (Anonymous State Variable)

The anonymous state variable $ can be used instead of an explicit state $xxxx (see section 16.4,
“state”), but you can (obviously) only have one.

File: state

sub something
{
 my $ = 0; # Only executed once!
 return $++;
}

say something for ^10;

The program will print the numbers 0 to 9, each on its own line.

If we are happy with zero as the initial value, we can actually skip the declaration. The anonymous
state variable will magically pop into existence when used.

267

File: state2

sub something
{
 return $++;
}

say something for ^10;

The array @ and hash % versions are also available. So in a way you can have as many variables as
you want:

> %<name> = 12;
> %<city> = "Oslo";

This may look similar to matches (see section 11.9.1, “() (Capturing)”), where we
can use $[0] to get the first match. But the first value in the anonymous state array
is @[0].

16.7. gather / take
Let us take a look at another way of making sequences; with gather and take.

gather takes a block as argument, and collects (or «gathers») the values specified with take.

File: gather1

my @a = gather
{
 take 1; take 5; take 42;
}

say @a;

$ raku gather1
[1 5 42]

Note that all the values are computed at once. We could have done it like this instead, with the same
result:

my @a = 1, 5, 43;

We want a lazy sequence, and that can be accomplished with binding to a scalar instead:

268

File: gather2

my $a := gather
{
 take 1 while 1;
}

say "1: $a[1]";
say "40: $a[40]";
say "4: $a[4]";

my $count = 0;
for $a -> $item
{
 last if $count++ >= 10;
 say $item;
}

$ raku gather2
1: 1
40: 1
4: 1
1␤1␤1␤1␤1␤1␤1␤1␤1␤1␤

The three say statemements before the loop use this as a lazy list, expanding it as we need the
values.

The loop on the other hand makes a sequence, and it forgets the values as soon as they are
consumed (the loop enters the next iteration). So after the loop, $a is exhausted and will fail if we
try to access it.

We can drop the curlies (if we want to) as we have only one expression in the block:

my $a := gather take 1 while 1;

Assigning the sequence to an array is a bad idea, as it will try to evaluate an infinite sequence. The
code runs forever:

my @a = gather take 1 while 1;

Let us revisit the Flip-Flop sequence from section 16.3.5, “A Flip-Flop Sequence”:

269

File: flip-flop-sequence

my $flip-flop := (True, False, !* ... *);

say "I like potatos: $_." for $flip-flop

Here it is, with gather/take:

File: flip-flop-gather

my $flip-flop := gather loop { take True; take False; }

say "I like potatos: $_." for $flip-flop;

We can use a state variable instead:

File: flip-flop-gather2

my $flip-flop := gather loop { state $state = False;
 $state = ! $state;
 take $state; }

say "I like potatos: $_." for $flip-flop

The loop is still there, so this version makes for more code without any obvious benefits.

But we can add the random start value here as well:

File: flip-flop-gather3

my $flip-flop := gather loop { state $state = (True, False).pick;
 $state = ! $state;
 take $state; }

say "I like potatos: $_." for $flip-flop

And that is something we haven’t shown for a sequence before.

So let’s try to do that with a sequence.

We can shorten the definition (in «flip-flop-sequence»):

my $flip-flop := (True, False, !* ... *); # Old
my $flip-flop := (True, !* ... *); # New

Next we randomize the first value:

270

my $flip-flop := ((True, False).pick, !* ... *);

And it works, as this infinite loop shows:

File: flip-flop-sequence2

my $flip-flop := ((True, False).pick, !* ... *);

say "I like potatos: $_." for $flip-flop

16.7.1. lazy vs gather/take

Note that lazy (see 16.2, “lazy”) can be used instead of gather/take - if the code has only one take.

A lazy version of flip-flop-gather2 looks like this

File: flip-flop-lazy

my $flip-flop := lazy loop { state $state = False;
 $state = ! $state;
 }

say "I like potatos: $_." for $flip-flop;

Here is the original again, for easy comparison:

File: flip-flop-gather2

my $flip-flop := gather loop { state $state = False;
 $state = ! $state;
 take $state; }

say "I like potatos: $_." for $flip-flop

16.7.2. A Deck of Cards

A Deck of Cards consist of 52 cards, 13 (values 1 to 13) of each of the four types Spade, Club, Heart
and Diamond.

Unicode has characters for the types:

But they are difficult to print, so we’ll stick with the first letter of the names.

271

File: deck

my @deck;

for <S C H D> -> $type # Spade, Club, Heart, Diamond
{
 @deck.push("$type$_") for 1 .. 13;
}

say @deck.join(",");

$ raku deck
S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,
H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13

Exercise 16.2

Rewrite the «deck» program using map instead of the two loop.

Exercise 16.3

Rewrite the «deck» program using gather/take.

A deck of cards isn’t much use if it is sorted. We can use pick(*) to shuffle the cards (return the
values in random order):

File: deck-random

my @deck;

for <S C H D> -> $type # Spade, Club, Heart, Diamond
{
 @deck.push("$type$_") for 1 .. 13;
}

say @deck.pick(*).join(",");

272

$ raku deck-random
C6,S4,S6,H6,S1,C12,D8,C7,C8,S2,S5,C5,D13,H3,S7,S3,S11,H8,C4,H11,D9,D4,C10,D10,H9,D5,D3
,H12,C11,D11,H7,D12,D6,S13,H4,C9,C2,S8,D2,D7,H10,C3,D1,S10,S9,H1,H2,H13,H5,C1,S12,C13

$ raku deck-random
S6,H7,S5,D8,S1,H12,C1,H13,C13,C11,S10,C5,H8,D5,H10,D3,H2,S4,H11,C6,C3,D1,D12,D11,D2,S7
,H5,D13,D9,S11,C12,C7,H4,S8,H1,D6,H3,C9,D7,D10,H9,S3,S9,H6,C10,S13,D4,S2,C4,S12,C2,C8

Note that using pick (see 8.22.2, “pick”) to draw a selection of cards from our deck
isn’t a good idea, as it leaves the cards in the deck. (So that we can draw them
again later.)

Use a loop (for @deck ..) or use shift on it.

Another approach is using grab, which will be described in the «Advanced Raku»
course.

16.7.3. take-rw

Use take-rw to return the given item to the enclosing gather block, without introducing a new
container. It is binded to the position in the original array, and can be changed:

File: flip-flip

my @flip-flop = |(True, False) xx 8;

say @flip-flop;

sub flipflop (@list)
{
 gather for @list
 {
 take-rw $_;
 }
}

for flipflop(@flip-flop)
{
 $_ = True if $_ == False;
}

say @flip-flop;

Running it:

273

$raku flip-flip
[True False True False True False True False True False True False True False True
False]
[True True True True True True True True True True True True True True True True]

Use with care. It will fail (with the «Cannot assign to an immutable value» error message) if we give
it a list, as we cannot change immutable values:

for flipflop((True, False, True, False))
{
 $_ = True if $_ == False;
}

16.8. Closures
We define a lexical variable (a my-variable) in a block. This variable would normally die when the
block ended, but the trick is that we use it inside a procedure (also out of scope) that we have a
reference to. This reference is stored outside this block.

See https://en.wikipedia.org/wiki/Closure_(computer_programming) for details.

We have used the term Closure earlier in this book to mean text inside curly
braces in strings. That is a Raku name that is somewhat unfortunate. But on the
other hand, it is a kind of closure, as it evaluates the expression inside it and
returns it to the outside where it lives on after the closure has died.

16.8.1. Flip-Flop Closure

We’ll have a look at Closures before discussing Classes (in the next chapter).

274

https://en.wikipedia.org/wiki/Closure_(computer_programming

File: flip-flop-closure

sub gen-flip-flop ①
{
 my $state = Bool.pick; ②

 sub flip-flop ③
 {
 $state = ! $state; return ! $state;
 }
 return &flip-flop; ④
}

my $lunch = gen-flip-flop; ⑤
my $dinner = gen-flip-flop;

say "Lunch: " ~ $lunch(); ⑥
say "Dinner: " ~ $dinner();
say "Dinner: " ~ $dinner();
say "Lunch: " ~ $lunch();
say "Lunch: " ~ $lunch();

① We set up an outer procedure.

② We place the state variable (now a usual my-variable)

③ and the flip-flop procedure inside it.

④ This outer procedure returns a pointer to the inner procedure (by using the & prefix).

⑤ Then we set up two instances of the generator. The variables contain pointers to procedures.

⑥ Use the parens-syntax to call the procedures.

Exercise 16.4

Is it possible and/or sensible to use take-rw (see section 16.7.3, “take-rw”) to generate a closure?

16.8.2. Optional Start Value

The initial value is completely random. We can modify it to take an optional start value:

File: flip-flop-closure2 (diff)

sub gen-flip-flop (Bool $state is copy = Bool.pick)

my $dinner = gen-flip-flop(True);

275

16.8.3. Closure vs Class

Every closure can be replaced by a class, so feel free to uses classes instead.

But the opposite is not true; classes can do so much more than what a closure can.

276

Chapter 17. Classes
We define a class with the class keyword.

class Person
{
 # Place the content here
}

17.1. has
Class variables are declared with the has keyword:

class Person
{
 has Bool $.is-taxpayer;
 has Bool $!is-happy;
}

17.1.1. ! (Private Attribute)

The exclamation point (!) between the sigil ($) and the name (in this case is-taxpayer) means that
the attribute (variable) is private and cannot be accessed outside of the class.

(We can in fact give other classes explicit access; see section 17.13.1, “trusts”.)

17.1.2. . (Public Attribute)

Use a dot (.) instead of the exclamation point (!) to make the attribute (variable) public.

Flip-Flop implemented as a class:

class Flip-Flop
{
 has Bool $!state = Bool.pick;
}

17.2. new
We need two flip-flop instances, and use the built-in new method supported by every class to get
them. We omit giving a value to the class variable, and it will defalt to a random value of True or
False:

277

class Flip-Flop
{
 has Bool $!state = Bool.pick;
}

my $lunch = Flip-Flop.new();
my $dinner = Flip-Flop.new();

17.2.1. Stubbed Class

We have to declare a class, before we can use (or reference) it. That can be a problem if we want
classes to reference each other.

One solution is a forward class declaration (also called «Stubbed class», as we use a 10.12.1, “Stub
Operator”). It looks like this:

class Parent { ... }

Stubbed Classes are fine, as long as we specify the content of the class, before using it.

The other solution is to ensure that we specify them in the right order, so that they are not
referenced befroe we have declared them.

We must use Stubbed Classes when we have mutual dependencies (or a circular data structure):

File: stubbed-class

class Parent { ... }

class Child { has Parent $.parent; }

class Parent { has Child $.child; }

17.3. method
We need a method that gives us the state, and flips the stored value. I have called it «flip-flop»:

278

class Flip-Flop
{
 has Bool $!state = Bool.pick;

 method flip-flop
 {
 $!state = ! $!state;
 return $!state;
 }
}

17.3.1. . (Method Call)

Then we’ll have to rewrite the «free-lunch» and «free-dinner» procedures.

We use a . and the method name (.flip-flop) on the object ($lunch):

sub free-lunch
{
 say "I'm { $lunch.flip-flop ?? "for" !! "against" } free lunches";
}

sub free-dinner
{
 say "I'm { $dinner.flip-flop ?? "for" !! "against" } free dinners";
}

free-lunch; # True
free-dinner; # True
free-dinner; # False
free-dinner; # True
free-lunch; # False
free-lunch; # True
free-dinner; # False
free-lunch; # False

I have added the result as comments, to show that the program works as expected.

The complete program:

279

File: flip-flop-class

class Flip-Flop
{
 has Bool $!state = Bool.pick;

 method flip-flop
 {
 $!state = ! $!state;
 return $!state;
 }
}

my $lunch = Flip-Flop.new();
my $dinner = Flip-Flop.new();

sub free-lunch
{
 say "I'm { $lunch.flip-flop ?? "for" !! "against" } free lunches";
}
sub free-dinner
{
 say "I'm { $dinner.flip-flop ?? "for" !! "against" } free dinners";
}

free-lunch; # True
free-dinner; # True
free-dinner; # False
free-dinner; # True
free-lunch; # False
free-lunch; # True
free-dinner; # False
free-lunch; # False

17.3.2. Colon Syntax

There is an alternate colon syntax for calling methods, so that they look like procedure calls:

$lunch.flip-flop
flip-flop($lunch:); # The same

If the methods takes arguments, just add them:

$obj.method(1);
method($obj:, 1); # The same

280

17.4. Named Arguments
The default constructor (the new method) supports named arguments only. So if we want to override
the random initial value, we must do it like this:

my $lunch = Flip-Flop.new(state => False);
my $dinner = Flip-Flop.new;

But that doesn’t work. The initial value is still random.

17.5. Public Class Variables
The builtin default constructor only works with public variables, so we have to change the variable
from private to public:

has Bool $.state = Bool.pick; # public

Note that public variables are visible to the public (the program code outside the class):

say $lunch.state;

So this is generally not a good idea.

We can read public object variables, but we cannot change them.

17.5.1. is rw

We can allow public variables to be changed with the is rw (read write) trait, like this:

has Bool $.state is rw = Bool.pick;

In our case, that would be a bad idea.

17.6. self
If you need access to the current object inside a method, use self.

See the next section for an example.

17.7. Custom «new»
If it is a problem that we can access object variables from the outside, make them private and write
a custom new constructor:

281

File: flip-flop-class-new (partially)

class Flip-Flop
{
 has Bool $!state;

 method new (:$start = Bool.pick)
 {
 self.bless(state => :$start);
 }
}

I have changed the variable to private, and moved the default value to the new method so that it can
cope with and without an argument.

I have also changed the name used in the constructor from «state» to «start», as that is a better
name from a user point of view. Inside the class, «state» makes sense though.

my $lunch = Flip-Flop.new(start => False);
my $dinner = Flip-Flop.new;

17.7.1. bless

bless is a low-level object constructor. It creates a new object of the same type as the invocant
(given with self), and fills in the named parameters.

It is useful for custom constructors (as the new method in the previous section). But a custom Build
method (see the next section) is usually better.

17.8. Custom BUILD
We can try with BUILD instead, which is called by the default new:

File: flip-flop-class-BUILD (partially)

class Flip-Flop
{
 has Bool $!state;
 submethod BUILD (:$!state = Bool.pick) { }
}

BUILD has to cope with a missing value as well, so we move the default initialization there. BUILD has
no body, as variables with the same names are mapped automatically; as I have kept the name
state.

submethod is a method, but it will not be inherited by child classes. See the 17.14.3, “submethod” and
17.14, “Inheritance” sections for more information.

282

17.9. Wrong Start Value
The «flip-flop» method flips the value, before returning it. The consequence is that the first value
we get is the opposite of what we specified as the start value.

The normal solution would have been saving the value before changing it, but as we have a
boolean value, we can get away with inverting (flipping) the returned value.

method flip-flop
{
 $!state = ! $!state;
 return ! $!state;
}

A lot of exclamation marks!

The complete program:

283

File: flip-flop-class-new2

class Flip-Flop
{
 has Bool $!state;

 method flip-flop
 {
 $!state = ! $!state;
 return ! $!state;
 }

 method new (:$start = Bool.pick)
 {
 self.bless(state => $start);
 }
}

my $lunch = Flip-Flop.new(start => False);
my $dinner = Flip-Flop.new;

sub free-lunch
{
 say "I'm { $lunch.flip-flop ?? "for" !! "against" } free lunches";
}

sub free-dinner
{
 say "I'm { $dinner.flip-flop ?? "for" !! "against" } free dinners";
}

free-lunch;
free-dinner;
free-dinner;
free-dinner;
free-lunch;
free-lunch;
free-lunch;
free-dinner;

17.10. Object Comparison
If we compare two objects, what are we comparing?

284

File: flip-flop-test (partial)

my $lunch = Flip-Flop.new(start => False);
my $dinner = Flip-Flop.new(start => False);

say $dinner eq $lunch; # -> False

Answer: We chech if they are the same object. And in this case they obviously are not.

17.10.1. eqv (Equivalence)

We can compare them with the Equivalence Operator eqv instead.

This operator returns True if the two arguments have the same type, structure and values:

File: flip-flop-test (partial)

say $dinner eqv $lunch; # -> True

The objects may have the same values, but they are not the same object. Think of having two
children named «Fred» in the same kindergarten. They are not the same kid, regardless of the same
name.

my $a = Person.new(name => "Arne")
my $b = Person.new(name => "Bente")

say $a eq $b; # -> False

my $c = $a ①
say $a eq $c # -> True ②

$c.name = "Charlie";
say $c.name # -> Charlie
say $a.name # -> Charlie

① $c points to the same object as $a.

② So $a and $c is the same object.

We’ll get back to this class in the next section.

Have this in mind before using unique (see section 8.18, “unique (Lists Without
Duplicates)”) on a list of objects.

17.10.2. ===

Use the Value Identity Operator === to check if both arguments are the same object, disregarding
containerization:

285

> my class A { };
> my $a = A.new;
> say $a === $a; # -> True
> say A.new === A.new; # -> False
> say A === A; # -> True
> my $b := $a;
> say $a === ba; # -> True

See section 3.7.7, “===” for a description on using === on values.

17.11. A Person Class
The «Person» class hinted at in the previous section can look like this:

File: person

class Person
{
 has Str $.name; ①
 has Str $.birtdate; ②

 has Person $.father; ③
 has Person $.mother; ④
 has Person $.spouse; ⑤
 has Person @.child; ⑥

 method new (:$name, :$birthdate) ⑩
 {
 self.bless(:$name, :$birthdate); ⑪
 }
}

my $tom = Person.new(name => "Tom", birthdate => "12 Jan 1970"); ⑦ ⑧
my $lisa = Person.new(name => "Lisa", birthdate => "21 Mar 1969");

my $john = Person.new(name => "John", birthdate => "5 Apr 1998");
my $peter = Person.new(name => "Peter", birthdate => "23 Oct 2001");

my $mary = Person.new(name => "Mary", birthdate => "12 Mar 2000");

say $tom.birthdate; # 12 Jan 1970 ⑨
say $mary.name; # Mary ⑨

① A public variable, so the default «new» will take care of it for us.

② As above. Also a string, as we haven’t discussed dates (date objects) yet.

③ A person has one (or no) father.

④ A person has one (or no) mother.

286

⑤ A person has one (or no) spouse.

⑥ A person has none or more children.

⑦ And finally we set up 5 Person objects.

⑧ We use the default «new» constructor, and ignore the relationship fields.

⑨ Just to show that it actually works.

⑩ I have written a constructor, so that we cannot specify the relationship fields.

⑪ We can use this short form when the field has the same name as the variable.

I could have made the relationship fields private (e.g. «$!father» instead of «$.father»), instead of
writing a new constructor, to make it impossible to set them in the «new» call.

But that would have limited what we could do later on, so we’ll stick with public.

287

Exercise 17.1

Write the following methods: «set-father», «set-mother», and «set-spouse» to set the respective
fields. Disregard the @.child field.

Add the following code to check that it works (executes without errors):

$tom.set-spouse($lisa);
$lisa.set-spouse($tom);

$john.set-father($tom);
$john.set-mother($lisa);

$peter.set-father($tom);
$peter.set-mother($lisa);

$peter.set-spouse($mary);
$mary.set-spouse($peter);

say $tom.spouse.name;
say $john.mother.name;

The data structure/dependencies should look like this:

Mary

Tom

PeterJohn

Lisa
has spouse

has spouse

ha
s

fa
th

er

ha
s

m
ot

he
r

has motherhas father

has spouse

has spouse

Figure 14. Persons

If Lisa had had a father, we could have used «$john.mother.father.name» to get his
name. She has not (in our data structure), so the program would terminate.

$tom.spouse.name; # -> lisa
$tom.father.name; # -> program termination

Not very robust. And this shows that we really shouldn’t access fields directly (but
use methods). We’ll get back to that later.

Beeing a spouse is a one-to-one relationship in our class, and we set up as a two way relationship in
our data structure by specifying both directions separately. It is possible to screw up things like this:

288

$peter.set-spouse($mary);
$mary.set-spouse($tom); # Tom vs Peter

$peter.spouse.name; # -> Mary
$peter.spouse.spouse.name; # -> Tom
$peter.spouse.spouse.spouse.name; # -> Lisa

Exercise 17.2

Simplify «set-spouse» to set up both relationships, so that we can do this:

$tom.set-spouse($lisa);
$lisa.set-spouse($tom);

$peter.set-spouse($mary);
$mary.set-spouse($peter);

Add this line to check that it works:

say $lisa.spouse.name; # Tom

289

Exercise 17.3

Write the method «add-child» to add to the «child» field.

Add the following code to check that it works (executes without errors):

$tom.add-child($john);
$tom.add-child($peter);

$lisa.add-child($john);
$lisa.add-child($peter);

Write the method «show-children« that shows them, and use it like this:

$tom.show-children;
$mary.show-children;

This should give this output:

Tom has a child named John.
Tom has a child named Peter.
Mary has no children.

The list of children is just that, a list.

$tom.add-child($peter);
$tom.add-child($peter);
$tom.add-child($peter);
$tom.add-child($peter);

The easiest way of preventing duplicates is to apply unique on the list, after adding the new child to
it:

File: person-children2 (partial)

method add-child (Person $child)
{
 @!child.push($child);
 @!child.=unique;
}

This removes duplicate objects only (see 17.10, “Object Comparison”), so it is ok to have several
persons with the same name (though confusing in practice, as we all know).

290

Exercise 17.4

Simplify the parent - child relationship set up, as we did for spouses.

Rewrite «set-father» and «set-mother» to call «add-child» for us, so that we can remove the «add-
child» calls in the program.

17.12. Output
What happens if we try to print an object?

We can try. I have written a little program doing that (available as «person-say»). All it does is
define the «Person» class, set up «Tom» and then these lines:

say $tom;
say $tom.perl;
say $tom.gist;
say $tom.Str;

The first three says behave the same, and gives:

Person.new(name => "Tom", birthdate => "12 Jan 1970", father => Person, mother =>
Person, spouse => Person, child => Array[Person].new())

But the last one is truly non-useful: Person<94782701358256>.

Stringification of objects gives a unique value for that object (so that comparison will work), and
the number is the memory address of the object.

But it is actually up to us, as programmerer. We can add custom Str and gist methods if we don’t
like the default behaviour. (And I certainly do not.)

But before we do that, I’ll take a little detour. I didn’t show the file «person-say» as it had the entire
class definition that I would have shown again and again in this chapter (if I hadn’t cheated with
my examples).

17.12.1. A Class as a Module

We should move it into a module, as we did with our testing framework in Chapter 15, Writing a
Module.

291

File: lib/Person.pm6

class Person
{
 has Str $.name;
 has Str $.birthdate;

 has Person $.father;
 has Person $.mother;
 has Person $.spouse;
 has Person @.child;
}

File: person-say2

use lib "lib";
use Person;

my $tom = Person.new(name => "Tom", birthdate => "12 Jan 1970");

say $tom;
say $tom.perl;
say $tom.gist;
say $tom.Str;

Running it gives the same result as running «person-say».

use lib "lib" tells the compiler to add the «lib» directory to the list of locations to
look for modules. See section 15.4, “use lib” for more information.

17.12.2. unit class

We can use unit class instead, saving us for a block level if we have the class in a separate file (as
we do now):

unit class Person;

Place the content here

17.12.3. custom Str and gist

And now back to the question of output. We can provide custom versions of Str and gist:

292

File: lib/PersonX.pm6

unit class Person;

has Str $.name;
has Str $.birthdate;

has Person $.father;
has Person $.mother;
has Person $.spouse;
has Person @.child;

method gist
{
 return "{ $.name } ({ $.birthdate }-)";
}

method Str
{
 return $.gist;
}

Note that I have renamed the class file (to «PersonX»), but not the class (still «Person»). That is legal,
but not necessarily smart.

File: person-say3

use lib "lib";
use PersonX;

my $tom = Person.new(name => "Tom", birthdate => "12 Jan 1970");

say $tom;
say $tom.perl;
say $tom.gist;
say $tom.Str;

Running it gives Tom (12 Jan 1970-) for all of them except .perl (which continues to give a
Person.new(...) code block).

(The dash after the birth date indicates that the person is still alive. We should be careful with how
we display data about persons.)

If you don’t like code replication, let one method (gist) do the job:

293

method Str
{
 return $.gist;
}

If you think it is a bad idea to stringify objects, use one of the Stub Operators (see
section 10.12.1, “Stub Operator”) to «reward» programmer stupidity:

method gist
{
 ...;
}

Do this in a module, release it, and wait for users to complain aboat it.

We have to drop the explicit return as the compiler will be confused and assume
that ... is the Sequene Operator. ??? and !!! can be used with return, as they have
no double meaning.

17.13. Private Methods
Methods can be private, just prefix them with !:

method !explode { ... }

They are not callable outside the class itself. Inside call them like this:

self!explode;

17.13.1. trusts

We can allow other classes to access private methods and attributes in a class.

The class that we want to trust must be declared already, and we give it access with the trusts
keyword:

294

File: class-trust

class Owner { ... }; ①

class Car ①
{
 trusts Owner;

 has Str $.type = "no name";

 method !sell { say "The $.type is sold." } ②
}

class Owner ①
{
 has Str $.name = "no name";
 has Car $!car = Car.new(type => "Volvo X1"); ④

 method sell-car { $!car!Car::sell; } ⑥
 method get-car { $!car; }
}

my Owner $o = Owner.new(name => "Tom Jones"); ③

$o.sell-car; ⑤

say $o.get-car.type; ⑦

$o.get-car!sell;

$o.get-car!Car::sell;

① The Owner class references the Car class, so Car must be declared first. This poses a problem as
trusts Owner requires that Owner must be declared first. But we can get away with a stubbed
class.

② The Car class has a private method sell that it has allowed Owner to call.

③ We set up a new Owner object,

④ and this sets up a new Car as well, linked from Owner.

⑤ Then we sell the car, from the Owner object.

⑥ We must prefix the method (sell) with the full class name (Car::sell).

⑦ We can access the car type, as that is a public attribute.

$o.get-car!sell;

Uncommenting this line in the program gives an error:

295

===SORRY!=== Private method call to sell must be fully qualified with the package
containing the method

We can try fixing the problem (using the class name), and uncomment this line instead:

$o.get-car!Car::sell;

It fails as well:

===SORRY!=== Cannot call private method 'sell' on package Car because it does not
trust GLOBAL

The syntax is correct, but the main program isn’t trusted. The error message gives a hint, so we can
try:

class Car
{
 trusts Owner;
 trusts GLOBAL;
 ...
}

And with this change it works. We can now sell the car from itself (the Car class), the Owner class,
and the main program - but not from any other class (if we had any).

17.13.2. trusts (method)

Use trusts as a method to get a list of classes that the invocant trusts.

We can add the following code to the program:

print "Owner trusts:"; print " " ~ .^name for Owner.^trusts; say "";
print "Car trusts:"; print " " ~ .^name for Car.^trusts; say "";

The result:

Owner trusts:
Car trusts: Owner

17.14. Inheritance
Inheritance is the primary mechanisms for code reuse in classes. A class (called child class) can
inherit from one or more classes (called parent or base classes).

296

Everything in a parent class, except submethods (see below) and private methods, is inherited. If
the child class defines an attribute or method with the same name, this version is used instead.

17.14.1. is

Inheritance is specified with the is keyword.

Let us revisit our «Person» class. We can add a couple of new classes, reusing it like this:

class Adult is Person
{
 has Str $.employer;
}

class Child is Person
{
 has Str $.school;
}

class Pensioner is Person
{
 ;
}

A class can inherit from more than one parent classes, either by inheriting from a class that itself
uses inheritance (and so on).

Or directly, like this:

class SeaPlane is Plane is Boat
{
 has Int $.pontoons;
}

Inheritance loops, where we end up inheriting from ourself, is a known problem. The fact that we
cannot inherit from a class that we haven’t already declared (just as with trusts; see section 17.13.1,
“trusts”) makes it hard to make this mistake.

A Stubbed class will not work:

File: inheritance-loop

class Mammal { ... }; ①
class Person is Mammal { has Str $.name; } ②
class Mammal is Person { has Str $.city; } ③

① We have to stub it, as «is Person» will fail

② This fails, as it tries to inherit from a stubbed class

297

③ We’ll never get this far

If we remove line 2, we get an error because of the is Person bit. We cannot add inheritance on a
stubbed class:

===SORRY!=== Redeclaration of symbol 'Mammal'

So it is impossible to set up a circular inheritance.

17.14.2. also is

We can use also is in the class body, instead of is in the head:

class SeaPlane
{
 also is Plane;
 also is Boat;

 has Int $.pontoons;
}

The problem with multiple inheritance is what to do if both the classes we inherit
from adds a method with the same name? Which of them should we use? Raku has
no mechanisms for the programmer to influence what it chooses to do. This is the
main reason it is advised to use Roles (see section 17.15, “Roles”) instead.

17.14.3. submethod

submethod is a method, but it will not be inherited by child classes. (The name refers to the fact that
submethods are scoped in the same way as procedures (sub).

It is often used for custom BUILD methods (as described in section 17.8, “Custom BUILD”).

They can also be useful if we want to ensure that the method must be specified for a child class, as
the parent version is unsuitable, and you want to have it as a public method.

class Person
{
 has Str $.birthdate; # On the form "yyyy-mm-dd"
 submethod age { Int((now.Date - Date.new($!birthdate))/365) }
}

class Woman is Person
{
 ;
}

298

Asking a Woman about her age causes an exception.

Exercise 17.5

The way we calculate a person’s age is wrong (as we assume that every year has 365 days). Fix it.

17.14.4. rebless

Use the Metamodel::Primitives.rebless method to cange the type of an object. This only works if the
new type is a subtype of the objects original type.

Let us revisit the Person/Woman example, stripped down to the bare minimum:

File: rebless

class Person { ; }
class Woman is Person { ; }

my $tom = Person.new;
my $lisa = Woman.new;

say $tom.WHAT; # -> (Person)
say $lisa.WHAT; # -> (Woman)

Metamodel::Primitives.rebless($tom, Woman);

say $tom.WHAT; # -> (Woman)

17.15. Roles
Roles let us attact attributes and methods to classes, without inheritance. This is useful when the
content of the role is the only thing the classes have in common.

They behave as a sort of macro, and one they are added to the class (or mixed in, in normal OO
terminology) they become part of the class - and we have no way of detecting that they were added
as a role instead of beeing declared in the class itself.

An example:

role Doors
{
 has Int $.number-of-doors;
}

299

17.15.1. does

Use the does keyword to add the role to the class:

class Car does Doors
{
 has Int $.wheels;
 has Bool $.has-automatic-transmission;
}

class House does Doors
{
 has Int $.floors;
 has Int $.rooms;
}

It is possible to apply a role to an object (at runtime):

> role Windows {}
> my $c = Car.new; # -> Car.new
> $c does Doors; # -> Car+{Doors}.new
> $c does Windows; # -> Car+{Doors}+{Windows}.new

17.15.2. also does

We can use also does in the class body, instead of does in the head:

class Car
{
 also does Doors;
 has Int $.wheels;
 has Bool $.has-automatic-transmission;
}

class House
{
 also does Doors;
 has Int $.floors;
 has Int $.rooms;
}

17.15.3. but (Objects)

In section 3.8, “but (True and False, but …)” we showed how but (and does) can be used with scalar
values on other scalar values. Applying anything except a Boolean value doesn’t really work out.

300

We can apply a role in the same way.

File: but-role

my $a = 41 but Doors;
say $a ~ " " ~ $a.doors();

my $b = 42;
say $b ~ " " ~ ($b.^can("doors") ?? $b.doors() !! "-");

^can

$b doesn’t have the role, and calling .doors on it would terminate the program. We can avoid that
by checking that the method exist (with the .^can method), before calling it.

Running it:

$ raku but-role
41 No doors
42 -

 Applying Roles to objects or values with but doesn’t work in REPL.

17.15.4. does

The does keyword is similar to but. The differene is that does adds it to the given variable, class or
object, whereas but applies it to a copy of it.

17.16. Multiple Dispatch
We can have different versions of a method, specified with the multi keyword, (as we can with
procedures; see section 10.12, “Multiple Dispatch”) with different parameter lists (or «signatures»):

multi method do-something ($file1) { ... }
multi method do-something ($file1, $file2) { ... }

Multiple dispatch come in addition to the built in dispatch mechanisms we get
with classes, as we can use the same method name on objects of different classes
and have them behave differently.

301

File: class-multi

class Fly
{
 # Attributes
 method kill { say "Fly killed"; }
}

class Process
{
 # Attributes
 method kill { say "Process killed"; };
}

my $a = Fly.new;
my $b = Process.new;

.kill for $a, $b;

Running it:

$ raku class-multi
Fly killed
Process killed

 Don’t forget the method keyword, as a multi on its own is short for multi sub.

17.17. A Fallback Method
We can define a method with the special FALLBACK name, and it will be used if we call a non-existing
method:

302

File: fallback

class Stupid
{
 method FALLBACK ($name)
 {
 say "You invoked $name, but it doesn't exist.";
 }
 method hello
 {
 say "Hi.";
 }
}

my Stupid $s = Stupid.new;

$s.some-method-that-doesn't-exist;
$s.hello;
$s.hi;

Running it:

$ raku fallback
You invoked some-method-that-doesn't-exist, but it doesn't exist.
Hi.
You invoked hi, but it doesn't exist.

If we don’t have FALLBACK method, calling non-existing methods will give a run
time error.

Having a FALLBACK method will hide this error message, if we actually intended to
call an existing method but made a typing error.

We can have arguments as well. Simply specify them after the argument taking the method name
(which is usually called $name).

Different signatures are supported with multi method:

303

File: fallback-multi

class Stupid
{
 multi method FALLBACK ($name, Str $person)
 {
 say "Hi, $person.";
 }
 multi method FALLBACK ($name)
 {
 say "You invoked $name, but it doesn't exist.";
 }
 method hello
 {
 say "Hi.";
 }
}

my Stupid $s = Stupid.new;

$s.some-method-that-doesn't-exist;
$s.some-method-that-doesn't-exist("Tom");
$s.hello;
$s.hi;

Running it:

$ raku fallback-multi
You invoked some-method-that-doesn't-exist, but it doesn't exist.
Hi, Tom.
Hi.
You invoked hi, but it doesn't exist.

We can have a catch all, using a slurpy argument (see section 10.14.1, “Slurpy MAIN”):

304

File: fallback-cathcall

class Stupid
{
 multi method FALLBACK ($name, *@arguments)
 {
 say "Method: $name";
 say "- Arg: $_" for @arguments;
 }
}

my Stupid $s = Stupid.new;

$s.some-method-that-doesn't-exist(<1 2 3>);
$s.hello;
$s.hi(706);

Running it:

$ raku fallback-catchall
Method: some-method-that-doesn't-exist
- Arg: 1
- Arg: 2
- Arg: 3
Method: hello
Method: hi
- Arg: 706

17.18. .?
We can use the special .? method invocation syntax if we are unsure if the method is available for
the object. It is executed if it is, and Nil is returned if it isn’t.

class A {};
my $a = A.new;
> say $a.foo-bar; # -> No such method 'foo-bar' for invocant of type 'A'
> say $a.?foo-bar; # -> Nil

17.19. .+
If we have a subclass wthat has redefined a method in the base class, invoking that method on an
object of the child class uses the child class version. We can get it to invoke them all with the .+
syntax:

305

File: all-methods

class A
{
 method hi { say "Hi!"; }
}

class B is A
{
 method hi { say "Hello!"; }
}

my $x = B.new;

$x.hi;
say "....";
$x.+hi;

Running it:

> raku all-methods
Hello!
....
Hello!
Hi!

An exception is thrown if the method doesn’t exist.

We have ignored the return values, but they are available. The last one gives a list, and here the
value is (True True).

The order of the calls are from the current class, and nesting out. We can use the ^mro method (see
section 3.2, “^mro (Method Resolution Order)”) to see the Method Resolution Order:

File: all-methods-mro (partial)

my $x = B.new;

say $x.^mro; # -> ((B) (A) (Any) (Mu))

17.20. .*
As .+, except that it returns an empty list if the method doesn’t exist (instead of throwing an
exception).

306

17.21. handles (Delegation)
Delegation is another way to set up relationships between classes. We make methods from another
class available in the current class (a sort of import).

See https://en.wikipedia.org/wiki/Delegation_(object-oriented_programming) for more information.

File: delegation

class Baby
{
 has $.name;
 method cry($times) { say "Waah! " x $times; }
}

my $tim = Baby.new(name => 'Tim');
say $tim.name; # -> Tim
$tim.cry(5); # -> Waah! Waah! Waah! Waah! Waah!

class BabySitter
{
 has $.name;
 has Baby $.baby handles (baby_name => 'name'); ① ②
}

my $teenager = BabySitter.new(name => 'Lisa', baby => $tim); ③

say $teenager.name; # -> Lisa
say $teenager.baby_name; # -> Tim ③

① The «BabySitter» class has a «Baby» attribute,

② and we make a method «baby_name» available. It is delegated (by handles) to the name method in
the «Baby» class.

③ Calling it.

Note that we had to rename the method (to «baby_name»), as they both use «name».

If the method names don’t collide, we can do this instead:

has Baby $.baby handles 'name';

We can inherit several methods as well:

has Baby $.baby handles <name bedtime diaper-type>';

307

https://en.wikipedia.org/wiki/Delegation_(object-oriented_programming

The alternative to delegation is accessing the objects directly. E.g.

File: delegation-no (partial)

say $teenager.baby.name; # -> Tim

17.22. Calling a method specified in a variable
We can call a method specified as a string (in a variable) by putting the variable in double quotes
(to get it interpolated), and adding () to get it called:

> say "{pi}.{$_}: " ~ pi."$_"() for <Int Real Str>;
3.141592653589793.Int: 3
3.141592653589793.Real: 3.141592653589793
3.141592653589793.Str: 3.141592653589793

308

Appendix 1. Docker
(Docker Docker (a light weight container technology) is the easiest way to obtain and run Raku
(except on Windows), at least just for testing. (And certainly if you do not want to install Raku on
your system.)

Since Raku is in very active development, with monthly releases, it may be prudent to check a
program with a newer version via Docker before upgrading the locally installed version of Raku.

If you don’t want to install Rakudo Star, using Docker is a good alternative.

I don’t recomment dunning Docker on Windows, as it requires Win 10 Pro. Using
VirtualBox is a workaround.

See https://docs.docker.com/docker-for-windows/install/ if you want to have a go
anyway.

Installing Rakudo Star with Docker
There are several Docker Images with Rakudo publicly available:

Image Name Operating System URL (for more information)

rakudo-star Ubuntu (Linux) https://github.com/perl6/docker

jjmerelo/alpine-perl6 Alpine (Linux) https://hub.docker.com/r/jjmerelo/alpine-perl6/

moritzlenz/perl6-regex-
alpine

Alpine (Linux) https://hub.docker.com/r/moritzlenz/perl6-regex-
alpine/

jjmerelo/rakudo-nostar Debian (Linux) https://hub.docker.com/r/jjmerelo/rakudo-nostar

jjmerelo/perl6-doc Debian (Linux) https://github.com/perl6/doc (and section 1.8.2,
“Local documentation”)

The Ubuntu version is a rather large Ubuntu system, and the Alpine one is a much more compact
distribution. Alpine should be faster, and use less memory. But it has some limitations, which we’ll
get back to later.

We can download and run a Docker Image in one operation (assuming that Docker has been
installed first):

309

https://docs.docker.com/docker-for-windows/install/
https://github.com/perl6/docker
https://hub.docker.com/r/jjmerelo/alpine-perl6/
https://hub.docker.com/r/moritzlenz/perl6-regex-alpine/
https://hub.docker.com/r/moritzlenz/perl6-regex-alpine/
https://hub.docker.com/r/jjmerelo/rakudo-nostar
https://github.com/perl6/doc

$ docker run -it rakudo-star
Unable to find image 'rakudo-star:latest' locally
latest: Pulling from library/rakudo-star
693502eb7dfb: Already exists
081cd4bfd521: Pull complete
c3439586dbe8: Pull complete
Digest: sha256:eac1ce2634c62857ee7e5e3f23b215 ...
Status: Downloaded newer image for rakudo-star:latest
To exit type 'exit' or '^D'
>

First it checks if the Image has been downloaded, and as it hasn’t it does so. Then it does a
checksum test, before running the Container.

The last line is the REPL prompt.

If you get an error message (permission denied), run the program as root:

$ sudo docker run -it rakudo-star

Or fix the permissions:

$ sudo usermod -a -G docker $USER

You have to log out and in again for this change to take effect. Reboot if that
doesn’t work.

Or if you want to use Alpine:

$ docker run -it jjmerelo/alpine-perl6
To exit type 'exit' or '^D'
>

Docker downloads the specified Docker Image the first time you run this
command, and will use the local copy after that.

Use docker pull to check if there is a newer version available, and download that:

$ docker pull rakudo-star
$ docker pull jjmerelo/alpine-perl6

Docker Shell

We have shown how to use Docker to run Raku in REPL mode.

310

But it is possible to log in to the container, so that you can run programs. Use this command:

$ docker run -it -v $(pwd):/opt rakudo-star bash

This will give you a bash (shell) prompt, inside the Docker file system, and the directory where you
ran the command is available as /opt.

This can be used to test local programs, simply by going to that directory and running them.

Note that this will not work with Alpine (as «bash» isn’t available in the Container).
So use Ubuntu if you want to run «bash».

It is also possible to run a local program directly. E.g. the «hello-world» program located in the
current directory:

$ docker run -it -v $(pwd):/opt rakudo-star /opt/hello-world
Hello, World!

Be aware that the current directory (inside Docker) will not be set to /opt, and this can cause
problems if the program assumes that it is run from the directory it is located in.

311

312

Appendix 2. Solutions
Solutions to the exercises in the book.

Chapter 1

Exercise 1.1

Installation is described in the chapter. Ensure that raku is in your path, and run:

> raku -v
This is Rakudo version 2019.11 built on MoarVM version 2019.11
implementing Perl 6.d.

If raku isn’t available, you can try the old name perl6. If that works, either use that
instead - or create a symbolic link (on a Unix likesystem).

If you get longer version numbers, you have a development version (typically a
result of a git pull command):

> raku -v
This is Rakudo version 2018.01-210-gf1b7cc4d9 built on MoarVM version
2018.01-97-g22d2db5e0 implementing Perl 6.c.

The compiler may be in an inconsistent state, and strange errors may pop up.

Exercise 1.2

You didn’t really expect a written solution?

Exercise 1.3

The number of keywords available in Raku:

$ p6doc list | wc
 855 1711 12499

Chapter 2

Exercise 2.1

313

> say 12 + 10 * 4; # -> 52

It is the same as:

> say 12 + (10 * 4); # -> 52

Exercise 2.2

Legal variable names:

my $don't-do-it; # Ok
my $dog; # Ok
my $dog2; # Ok
my $dog-3; # Error

Exercise 2.3

We can rewrite the code:

> ! 1 == 15; # -> False
> not 1 == 15; # -> True

In the first one the`!` negation has higher precedence than the comparison ==, so we get (! 1) ==
15 or False == 15 or 0 == 15 or False.

In the second one the not negation has lower precedence than the comparison ==, so we get not (1
== 15) or not (False) or True.

Chapter 3

Exercise 3.1

The largest number we can store in an Int:

We can try:

> my $a = 10 ** 100;
> my $b = 10 ** 1000;
> my $c = 10 ** 10000;

** is the exponential operator, and the last one gave us a number with 10001 digits. Probably big
enough.

It is estimated that there are between 1078 and 1082 (or 10 ++ 78 and 10 ++ 82 in Raku) atoms in the

314

known, observable universe. (Source: https://www.universetoday.com/36302/atoms-in-the-
universe/.)

Just to be sure that we actually get integers. (The fact that the output looks like it is a hint as well.)

> (10 ** 10000).WHAT; # -> (Int)

We can try with even bigger numbers:

> (10 ** 10000000000).WHAT; # -> (Failure)
> (10 ** 1000000000).WHAT; # Hangs

Conclusion: The limit is somewhere between those to. (We’ll get back to Failures in the «Advanced
Raku» course.)

The last one hangs as it takes a lot of time to compute that integer value.

So integers have a limit, but it is so large that for all practical purposes they are limitless.

Exercise 3.2

Why we get False from the first and True from the second:

> 111 before 21; # -> False
> "111" before "21"; # -> True

before is like cmp in that it compares numbers as numbers, and string as strings.

The first is simply a numeric comparison, and 21 is lower than 21.

In the second we compare two strings, and «1» comes before «2».

Chapter 4

Exercise 4.1

The output is «99».

Because the loop variable is lecically scoped to the block, and goes away afterwards - without
affecting the global variable which is now visible again.

Exercise 4.2

The output from this program:

315

https://www.universetoday.com/36302/atoms-in-the-universe/.
https://www.universetoday.com/36302/atoms-in-the-universe/.

for 5
{
 say "I like school.";
}

I like school.

5 is a single value, so we iterate over a one element list.

Exercise 4.3

A program that calculates the sum of all the integers from 1 to a specified upper limit (e.g. 1000),
displaying the last integer added to reach (or pass) the limit.

File: sum

my $sum = 0;
my $limit = 1000;

for 1 .. Inf -> $current
{
 $sum += $current;

 if $sum >= $limit
 {
 say "Limit $limit reached ($sum) at value $current.";
 last;
 }
}

$ raku sum
Limit 1000 reached (1035) at value 45.

Exercise 4.3

Adding a colon after once turns it into a label. That label is not used, but that doesn’t matter. The
following block (or statement) is executed for every iteration of the loop.

Chapter 5

Exercise 5.1

The easiest way to detect the bases or radixes available in Raku, try a high’ish value in REPL:

316

> :100<123>
===SORRY!=== Error while compiling:
Radix 100 out of range (allowed: 2..36)
------> :100<123>⏏<EOL>

So the answer is everything from «base 2» to «base 36».

The value 36 is the sum of the 26 letters in the english alphabet and the 10 digits.

»Base 1» (also called «Unary numerical system») is not supported. It would have
been easy; the unary value "1" is 1, "11" is 2, and so on. Note that this number
system doesn’t have a null value.

Exercise 5.2

Display pi as a binary number:

> say pi.base(2)
11.00100100001111110110101010

Note that sprintf and fmt (which we’ll introduce in chapter 6; sections 6.4.3, “sprintf” and 6.4.4,
“fmt”) don’t work (as they truncate the value to an Int):

> say pi.fmt("%b");
11

> say sprintf("%b", pi);
11

Exercise 5.3

Computing the sums of all the prime numbers (in numerically increasing order) from 1 to 100_000
(both included) showing if the sum is a prime or not. And displaying how many of those sums also
are primes.

317

File: prime-prime

my $sum;
my $prime = 0;

for 1 .. 100_000
{
 next unless .is-prime;

 $sum += $_;

 if $sum.is-prime
 {
 $prime++;
 say "Yes: primes(1 .. $_).sum is also a prime ($sum)";
 }
 else
 {
 say "No: primes(1 .. $_).sum is not a prime ($sum)";
 }
}

say "Number of primes: $prime.";

Running it gives a lot of output, but the last line tells us that:

Number of primes: 571.

Exercise 5.4

A program that adds every integer from 1 to 1000 that isn’t divisible by 7, using next:

File: sum-seven

my $sum;

for (1 .. 1000)
{
 next if $_ %% 7;
 $sum += $_;
}

say "Sum: $sum\n";

Running it:

318

$ raku sum-seven
Sum: 429429

Exercise 5.5

A cylinder with internal radius 10cm and height 50cm high can contain how many litres of liquid?

The formula for the volume is: «V = πr²h», where «r» is the radius, and «h» is the height.

If «r» and «h» are given in centimeters, the result is in cubic centimeters. 1 litre is equal to 1000
cubic centimeters.

That gives us this code:

File: cylinder

my $r = 10;
my $h = 50;

say "Litres: ", π * $r * $r * $h / 1000;

Running it:

$ raku cylinder
Litres: 15.707963267948966

Exercise 5.6

Which cylinder can contain the most liquid; the one from the prior exercise, or one with radius
35cm and height 10cm?

File: cylinder-compare

my $r = 10;
my $h = 35;

say "R:10,H:25,Litres: ", π * $r * $r * $h / 1000;

$r = 35;
$h = 10;

say "R:35,H10,Litres: ", π * $r * $r * $h / 1000;

Running it:

319

$ raku cylinder
R:10,H:25,Litres: 10.995574287564278
R:35,H10,Litres: 38.48451000647496

Choose the last one.

Chapter 6

Exercise 6.1

A program that asks for a number, and assumes that the input is in hexademinal and all the way
down to binary, printing the value in decimal:

File: number-base

my $input;
my $decimal;

repeat
{
 $input = prompt "Enter a number (or return to exit): ";

 for 2 .. 16 -> $base
 {
 my $decimal = try $input.parse-base($base);

 say "Base $base gives decimal: $decimal" if $decimal;
 }
} while $input;

Chapter 7

Exercise 7.1

A program that asks for input (in a loop), and replaces every lower case letter (a-z only) with the
upper case version, and vice versa, before printing it on the screen. Other characters are left
unchanged.

320

File: swap-case

my $in;

constant $a = ord "a";
constant $z = ord "z";
constant $A = ord "A";
constant $Z = ord "Z";

constant $diff = $A - $a;

repeat while $in
{
 $in = prompt "Type a text (or return to exit): ";

 for ords $in
 {
 if $a <= $_ <= $z { print chr($_ + $diff); }
 elsif $A <= $_ <= $Z { print chr($_ - $diff); }
 else { print chr($_); }
 }
 print "\n";
}

Exercise 7.2

A program that asks for integer values in a loop, displaying the sum of all the digits.

File: digit-sum

loop
{
 my $value = prompt "Enter an integer value (or return to exit): " or exit;

 next unless $value.Int;

 say "The digit sum of {$value} is { $value.comb.sum }.";
}

Exercise 7.3

A program that asks for input in a loop, and shows the last character:

We cannot use chop. It does remove the last character, but returns the original string without this
character (e.g. say "1234".chop; #→ 123)

321

File: last-char (partial)

loop
{
 my $value = prompt "Enter a string (or return to exit): " or exit;

 say "The last character in '{$value}': { $value.comb[* -1] }.";

 ...
}

Also, show every second character:

File: last-char (partial)

 print "Every second character: ";

 my $count = 0;
 for $value.comb
 {
 next if $count++ % 2;
 print $_;
 }
 say "\n"; # An extra newline (i.e. 2 of them).

Exercise 7.4

A version of «swap-case» from Exercise 7.1 that also handles unicode letters, that is letters other
than a-z.

322

File: swap-case2

my $in;

repeat while $in
{
 $in = prompt "Type a text (or return to exit): ";

 my @in = $in.comb;
 my @lower = $in.uc.comb;
 my @upper = $in.lc.comb;

 for ^@in.elems -> $i
 {
 if @lower[$i] eq @upper[$i] { print @in[$i]; } # Not a letter
 elsif @lower[$i] eq @in[$i] { print @upper[$i]; } # Lower case -> Upper
 elsif @upper[$i] eq @in[$i] { print @lower[$i]; } # Upper case -> Upper
 }

 print "\n";
}

Chapter 8

Exercise 8.1

(1 .. 10).map({ $^a + $^b }); # -> (3 7 11 15 19)

Because we specify 2 placeholder arguments, it takes 2 at a time.

If we give it an odd number of elements, it will fail:

> my @a = 1..11; # -> [1 2 3 4 5 6 7 8 9 10 11]
> @a.map({ $^a + $^b });
Too few positionals passed; expected 2 arguments but got 1 in block at
<unknown file> line 1

Exercise 8.2

Get all two digit prime numbers:

323

File: primes

my @primes;
for 10 .. 99 -> $candidate
{
 @primes.push($candidate) if $candidate.is-prime;
}
say "Found { @primes.elems } primes: { @primes }.";

$ raku primes
Found 21 primes: 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97.

It is possible to use grep instead of a loop:

File: primes2

my @primes = (10 .. 99).grep(*.is-prime);
say "Found { @primes.elems } primes: { @primes }.";

grep will apply the block/code to each element in the list, and will include it (the element) in the
return value if the block gives a True value.

This is the same:

my @primes = (10 .. 99).grep: *.is-prime;
my @primes = grep { .is-prime }, (10 .. 99):

Exercise 8.3

A random integer from 10 to 99, both included.

> rand(99-10+1).Int + 10;

But is it really correct?

> rand(90).Int + 10; # -> [0 .. 89] + 10 -> [10 .. 99]

Yes it is.

But it is not instantly obvious that it is. So mere mortal programmers will get it wrong.

Conclusion: This is hard!

324

Exercise 8.4

A random prime number, between 1 and the given value.

> (1 .. 100).grep(*.is-prime).pick.say; # -> 13
> (1 .. 1000).grep(*.is-prime).pick.say; # -> 1861

Exercise 8.5

Generate a random string of ten characters usable as a password. Use letters, digits, and some
special characters (as e.g. «!» and «@»).

> (0..9, 'A' .. 'Z', 'a' .. 'z', '!', '@', '#', '|', '&', '%').flat.roll(10).join;
b@RO5pFSAo

We had to use flat to get a one dimensional array.

Exercise 8.6

A frequency table for 1 million random numbers in the range 1..100.

File: random-frequency

my @frequency;

@frequency[$_]++ for (1..100).roll(1_000_000);

say "$_: @frequency[$_]" for 1..100;

print "\n";

say "Max: { max(@frequency) }";
say "Min: { min(@frequency) }";

Exercise 8.7

Remove duplicates from the output of permutations:

unique doesn’t work, as it relies on scalar values. We have a list of lists.

325

File: permutations-unique

my @all = <a b b>.permutations;
my %seen;

print "(";

for @all -> @current
{
 my $string = @current.join;
 next if %seen{$string};
 print "(" ~ @current ~ ")";
 %seen{$string} = True;
}

say ")";

We used a hash (%seen) and add the sublist as a string when we encounter a new sequence.

We can do it without a hash. sort works:

> <a b b>.permutations.sort
((a b b) (a b b) (b a b) (b a b) (b b a) (b b a))

File: permutations-unique2

my @all = <a b b>.permutations.sort;
my $old = "";

print "(";

for @all -> @current
{
 my $string = @current.join;
 next if $string eq $old;
 print "(" ~ @current ~ ")";
 $old = $string;
}

say ")";

Running it:

$ raku permutations-unique2
((a b b)(b a b)(b b a))

326

Chapter 9

Exercise 9.1

What happens if we drop the .Hash part?

> my %hash = (1..10).Hash; # -> {1 => 2, 3 => 4, 5 => 6, 7 => 8, 9 => 10}
> my %hash = (1..10); # -> {1 => 2, 3 => 4, 5 => 6, 7 => 8, 9 => 10}

Nothing. The first line is overkill; both the assignment to a hash (%hash) and the final .Hash coerces
the list to a Hash.

We must drop the assignment, or assign to a scalar to avoid this:

> my $hash = (1..10).Hash; # -> {1 => 2, 3 => 4, 5 => 6, 7 => 8, 9 => 10}
> my $not = (1..10); # -> 1..10

The last one is shown without parens (a list) and square brackets (an array), and is obviously
another type:

> say $not.WHAT; # -> (Range)

Exercise 9.2

What happens if we have duplicate valuesin a hash:

> <1 2 1 3 1 4 1 5>.Hash;
{1 => 5}

They are squished. The last one wins.

Chapter 10

Exercise 10.1

Showing a sorted list of methods available for objects (or values) of the given type.

We have enough knowledge to have a go:

> Int.^methods; # -> (new Capture Int Num Rat ...)

That was easy. Now we add sorting:

327

Int.^methods.sort({$^a.fc cmp $^b.fc});
No such method 'fc' for invocant of type 'Method' ...

So ^methods gives us a list of objects of type Method, and sort doesn’t stringify them. So we have to do
that manually.

Surely the name method is it? We can check:

> Int.^methods[0]; # -> new
> Int.^methods[0].WHAT; # -> (Method)
> Int.^methods[0].name; # -> new
> Int.^methods[0].name.WHAT; # -> (Str)

Then we wrap it in a Map:

say map(*.name, $var.^methods).sort({$^a.fc cmp $^b.fc});

The complete program:

File: type-methods

sub MAIN ($var)
{
 print "$var (of type { $var.^name }) supports: ";
 say map(*.name, $var.^methods).sort({$^a.fc cmp $^b.fc});
}

Note that an integer argument will get the type "IntStr", regardless of what we try to do with it.

Exercise 10.2

Multiple dispatch cannot choose between Int and Str candidate in «MAIN», when we give it an
integer, as IntStr inherits from both of them.

We must make the candidates different:

328

File: intstr-gotcha2

multi MAIN (Int $number)
{
 say "Integer: $number";
}

multi MAIN (Str $string where /\D/)
{
 say "String: $string";
}

I have added a clause on the Str candidate that demands at least one non-digit character.

Exercise 10.3

Problem: Say that we specify 1000 as the upper limit. The programs makes a (lazy) Range. Then grep
converts it to a an eager list, applies is-prime on every value to sort out the prime numbers, and
finally pick gives us one of them.

Solution: Pick a random integer, and continue doing so until we have a prime number.

File: random-prime-smart

#| A random prime number between 1 and ...
sub MAIN (Int $upper-limit where * > 0)
{
 my $candidate;

 repeat
 {
 $candidate = (1 .. $upper-limit).pick;
 }
 until $candidate.is-prime;

 say $candidate;
}

Chapter 11

Exercise 11.1

What is the problem with this regex:

/\<(.*?)\>(.*)\<\/$0\>/

The greedy match in the middle is the problem.

329

> "This is bold and not and bold again." ~~ /\<(.*?)\>(.*)\<\/$0\>/
｢bold and not and bold again｣
 0 => ｢b｣
 1 => ｢bold and not and bold again｣

Solution: Make it non-greedy:

> "This is bold and not and bold again." ~~ /\<(.*?)\>(.*?)\<\/$0\>/
｢bold｣
 0 => ｢b｣
 1 => ｢bold｣

Exercise 11.2

The rotate13 encryption code

"This is it".trans(['a' .. 'z'] => ['n' .. 'z', 'a' .. 'm']) ①
 .trans(['A' .. 'Z'] => ['N' .. 'Z', 'A' .. 'M']) ②
 .say; ③

① You knew that «n» is the 14th letter in the alphabet, right? We map «a» to «n», «b» to «o» and so
on. We wrap the right side, so that «n» map to «a», «o» map to «b» ans so on.

② The same for upper case letters.

③ And end with printing the new string.

> "a".ord; # -> 97
> "z".ord; # -> 122
> "z".ord - "a".ord; # -> 25

So 26 letters.

Halfway (the one starting the second half):

> chr("a".ord + 13); # -> n

Shorter:

("a" .. "z").elems; # -> 26

("a" .. "z")[13]; # -> n

Other ways of doing this?

330

my @old_lc = "a" .. "z";
my @new_lc = @old_lc[13 .. 25, 0 .. 12];
my @old_uc = "A" .. "Z";
my @new_uc = @old_uc[13 .. 25, 0 .. 12];

"This is it".trans(@old_lc => @new_lc).trans(@old_uc => @new_lc).say;

The new arrays have two values, each a list, because of the comma (which is a list
generating operator).

This doesn’t matter here, but we can fix it (on both of them!) by attaching a .flat
at the end, like this: my @new_lc = @old_lc[13 .. 25, 0 .. 12].flat;.

With rotate:

$string.trans(['a' .. 'z'] => [('a' .. 'z').list.rotate: 13])
 .trans(['A' .. 'Z'] => [('A' .. 'Z').list.rotate: 13])
 .say;

Note that rotate doesn’t work on Ranges, so we must explicitly convert them to Lists.

And as a stand alone program:

File: rotate13

sub MAIN ($string)
{
 $string.trans(['a' .. 'z'] => [('a' .. 'z').list.rotate: 13])
 .trans(['A' .. 'Z'] => [('A' .. 'Z').list.rotate: 13])
 .say;
}

We have to convert the range to a list, as rotate doesn’t work with ranges.

Exercise 11.3

The regex versions of the trim-family:

Method Regex

$y = $x.trim-leading $x ~~ /^\s*(.*)/; $y = $0.Str;

$y = $x.trim-trailing $x ~~ /^(.?)\s$/; $y = $0.Str;

$y = $x.trim $x ~~ /^\s*(.?)\s$/; $y = $0.Str;

The Regex versions are obvious, right? There is no way we could make a mistake?

Note that the trim-family are not implemented as Regexes, and should be much faster.

331

Chapter 12

Exercise 12.1

Note that you can get two matches for a single module; one from GitHub and one from CPAN - even
if they are identical (the same version):

Figure 15. modules-fastcgi

Exercise 12.2

Installation of «Math::Trig» (possibly with «sudo zef» instead, depending on your setup):

$ zef install Math::Trig
===> Testing: Math::Trig
===> Testing [OK] for Math::Trig
===> Installing: Math::Trig

Reading the documentation, locally with «p6doc»:

$ p6doc Math::Trig
No Pod found in
/usr/local/share/perl6/site/sources/2E5819C0155B871E56783BE021F254FAFAD7A597

That didn’t work. So on to the web:

• Go to https://modules.raku.org/

• Write «Math::Trig» in the Search box, and click on «Search»

• We got 1 match. Click on the link to go to https://github.com/perlpilot/p6-Math-Trig

• The documentation is useless (the file «README.md»), so click on «lib/Math» and «Trig.pm»

• No inline documentation, and no comments either. So we have to read the actual source code

Decide on a procedure to use. We can go for «deg2rad».

Writing a program:

332

https://modules.raku.org/
https://github.com/perlpilot/p6-Math-Trig

File: math-trig

use Math::Trig;

for (0, 45 ... 360) -> $degree
{
 say "Degree $degree = { deg2rad($degree) } Radian.";
}

Running it:

$ raku math-trig
Degree 0 = 0 Radian.
Degree 45 = 0.7853981633974483 Radian.
Degree 90 = 1.5707963267948966 Radian.
Degree 135 = 2.356194490192345 Radian.
Degree 180 = 3.141592653589793 Radian.
Degree 225 = 3.9269908169872414 Radian.
Degree 270 = 4.71238898038469 Radian.
Degree 315 = 5.497787143782138 Radian.
Degree 360 = 6.283185307179586 Radian.

Chapter 13

Exercise 13.1

A file conversion program. Input is in latin1 (iso-latin-1), and output to the screen is in Unicode (utf-
8).

File: isolatin2unicode

sub MAIN ($file-name)
{
 say slurp $file-name, enc => "latin1";
}

File: isolatin2unicode2

sub MAIN ($file-name)
{
 .say for $file-name.IO.lines(enc => "latin1");
}

File: isolatin2unicode3

.say for lines(enc => "latin1");

333

Exercise 13.2

A file comparison program (cippled edition).

File: file-equal

sub MAIN ($file1, $file2)
{
 (say "No such file $file1"; exit) unless $file1.IO.e;
 (say "No such file $file2"; exit) unless $file2.IO.e;

 my $size1 = $file1.IO.s;
 my $size2 = $file2.IO.s;

 (say "Files differ (different sizes)"; exit) unless $size1 == $size2;

 (say "Unable to read file $file1"; exit) unless my $fh1 = open $file1, :bin;
 (say "Unable to read file $file2"; exit) unless my $fh2 = open $file2, :bin;

 my Buf $buf1;
 my Buf $buf2;

 while $buf1 = $fh1.read(1)
 {
 $buf2 = $fh2.read(1);

 (say "Files differ"; exit) if $buf1[0] != $buf2[0]
 }

 $fh1.close;
 $fh2.close;

 say "The files are equal";
}

Exercise 13.3

A Raku version of the Unix «which» program:

334

File: which6

sub MAIN ($program) ①
{
 for %*ENV<PATH>.split(":") -> $dir
 {
 next unless $dir.IO.d; # Is this a directory?

 for indir($dir, &dir).sort -> $file
 {
 next if $file.d;
 next unless $file.x; ②
 if $program eq $file ③
 {
 say "$dir/$file"; ④
 exit; ⑤
 }
 }
 }
}

① We start with «list-path», as told, and wrap it in a MAIN sub.

② The second change; the test for executable is moved up.

③ Have we found the program?

④ If so, print the full path (including the program)

⑤ And stop

We could have used last instead of exit. That would have terminated the inner loop only, and the
program would continue looking for the program in the other directories in our path. We can avoid
that by using a label:

OUTER:
for %*ENV<PATH>.split(":") -> $dir

last OUTER; # was 'exit'

But exit works just fine, as long as program termination is ok.

This program doesn’t cope with partial paths, e.g. a file with an embedded
directory separator (as in «bin/emacs»). But that is probably ok, as it will report
nothing.

We can extend it, so that it is possible to get all matches, and not only the first:

The following changes:

335

sub MAIN ($program, :$all = False)

exit unless $all;

$ raku which6-all which
/usr/bin/which

$ raku which6-all -all which
/usr/bin/which
/bin/which

The complete program is available as «which6-all».

The next exercise looks closer at the duplicate program problem.

Exercise 13.4

A program that traverses the path, reporting duplicate programs.

File: check-path

sub MAIN
{
 my %programs;
 for %*ENV<PATH>.split(":") -> $dir
 {
 next unless $dir.IO.d; # Is this a directory?

 for indir($dir, &dir).sort -> $file
 {
 next if $file.d;
 next unless $file.x;

 %programs{$file}.push("$dir/$file");
 }
 }

 for %programs.keys.sort -> $program
 {
 if %programs{$program}.elems > 1
 {
 say $program;
 for @(%programs{$program}) { say "- $_"; }
 }
 }
}

336

Running it on my machine shows quite a lot of duplicates. The first one shown is the one that is first
in the path, and the one actually chosen to execute.

Exercise 13.5

The program is the same as «check-path», as given in the previous exercise, except for the last line
of code (for @ …) that we replace with quite a lot of new code. And I have declared two counters as
well.

The code from the «files-equal» program has been modified to return True if the files are equal, and
False if not.

The new part of the if-block gets the first version (in $program-a), and iterates over the rest (in
$program-b) and compares the two versions. (Note that if we have more than two versions, they will
only be compared with the first one.

And we finish off by a count of how many duplicates and different versions we found.

File: check-path-duplicates

sub MAIN
{
 my %programs;
 for %*ENV<PATH>.split(":") -> $dir
 {
 next unless $dir.IO.d; # Is this a directory?

 for indir($dir, &dir).sort -> $file
 {
 next if $file.d;
 next unless $file.x;

 %programs{$file}.push("$dir/$file");
 }
 }

 my $equal = 0; my $not-equal = 0;

 for %programs.keys.sort -> $program
 {
 if %programs{$program}.elems > 1
 {
 say $program;
 my $program-a = @(%programs{$program})[0];
 say "- $program-a";
 for 1 .. %programs{$program}.elems -1 -> $current
 {
 my $program-b = @(%programs{$program})[$current];
 print "- $program-b";

 files-equal($program-a, $program-b)

337

 ?? (say " - Equal"; $equal++;)
 !! (say " - Not equal"; $not-equal++;);
 }
 }
 }

 say "Found $equal duplicates and $not-equal different programs."
}

sub files-equal ($file1, $file2)
{
 (say "No such file $file1"; exit) unless $file1.IO.e;
 (say "No such file $file2"; exit) unless $file2.IO.e;

 my $size1 = $file1.IO.s;
 my $size2 = $file2.IO.s;

 return False unless $size1 == $size2;

 (say "Unable to read file $file1"; exit) unless my $fh1 = open $file1, :bin;
 (say "Unable to read file $file2"; exit) unless my $fh2 = open $file2, :bin;

 my Buf $buf1;
 my Buf $buf2;

 while $buf1 = $fh1.read(1)
 {
 $buf2 = $fh2.read(1);

 return False if $buf1[0] != $buf2[0]
 }

 $fh1.close;
 $fh2.close;

 return True;
}

Exercise 13.6

A program «ack6» that searches all non-binary files recursively from the current directory, looking
for the specified string:

338

File: ack6

use Data::TextOrBinary; ①

sub is-binary ($file)
{
 return True if $file ~~ /\.[pdf|PDF|svg|SVG]$/; ①

 return ! is-text($file.IO);
}

unit sub MAIN ($search, :$verbose = False); ②

check-dir(".");

sub check-dir ($dir)
{
 say "Reading dir: $dir" if $verbose;
 for indir($dir, &dir).sort({ +$^a.IO.d ~ $^a cmp +$^b.IO.d ~ $^b }) -> $current
 {
 next unless $current.IO.r; # Skip files/directories we cannot read

 my $next = "$dir/$current"; ③

 if $current.IO.d
 {
 check-dir($next);
 }
 elsif is-binary($next) ④
 {
 say "Binary: $next (skipped)" if $verbose;
 next;
 }
 else ⑤
 {
 say "File: $next" if $verbose;

 for "$next".IO.lines -> $line ⑥
 {
 say "$next: $line" if $line.contains($search); ⑥
 }
 }
 }
}

① We use Data::TextOrBinary (from section xx) to detect if the files are binary. Note that the library
doesn’t always detect pdf files as binary, so I have added a test for some common file types that
could cause problems.

② I have kept the debug output from «indir-recursive2», but it must be activated with the «--
verbose» flag.

339

③ Simply to get the file with path (relative to the initial direcrtory) to save typing.

④ Skip binary files.

⑤ A file to search.

⑥ We read the content, line by line, and prints the line if we have a match

Note that all matching lines in a file will be shown. We can fix that easily:

unit sub MAIN ($search, :$verbose = False, :$first-only = False);

...

for "$next".IO.lines -> $line
{
 if $line.contains($search)
 {
 say "$next: $line";
 last if $first-only;
 }
}

The whole program is available as «ack6-first«.

$ raku ack6-first --first-only zef

Chapter 14

Exercise 14.1

A «cal» clone:

340

File: cal6

unit sub MAIN ();

my @month = ("", "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December");

my $now = now.Date.truncated-to('month');
my $year = $now.year;
my $month = $now.month;

say " @month[$month] $year";
say "Mo Tu We Th Fr Sa Su";

print " " x $now.day-of-week - 1;

loop
{
 printf('%2d ', $now.day);
 print "\n" if $now.day-of-week == 7;
 $now.=later(days => 1);
 last if $now.day == 1;
}
print "\n";

Exercise 14.2

Extended to accept optional values for month and year:

341

File: cal6-param

unit sub MAIN (:$year = now.Date.year, :$month = now.Date.month);

my @month = ("", "January", "February", "March", "April", "May", "June", "July",
 "August", "September", "October", "November", "December");

my $now = Date.new($year, $month, 1);

say " @month[$month] $year";
say "Mo Tu We Th Fr Sa Su";

print " " x $now.day-of-week - 1;

loop
{
 printf('%2d ', $now.day);
 print "\n" if $now.day-of-week == 7;
 $now.=later(days => 1);
 last if $now.day == 1;
}

print "\n";

Chapter 15

Exercise 15.1

Why is the recursive version of the Fibonacci procedure slower than the loop version?

• Recursion (calling a procedure a lot of times) takes time

• The recursive version recalculates the Fibonacci numbers repeatedly. Caching could have
helped.

F:10

+F:9 F:8

+F:8 F:7 +F:7 F:6+

+F:7 F:6 +F:6 F:5 ++ +F:6 F:5 + +F:5 F:4

Fibonacci(10)

Figure 16. Fibonacci 10 Call Tree (first 4 levels)

Here we have F:8 in two places, and both of them will be calculated (with recursion). And it gets
worse; F:7 is calculated three times, and F:6 4 times. An so on.

342

F:7

F:6

F:5F:5

Fibonacci(7)

F:2

+

F:4

F:1

1

F:3F:3

F:2

F:1

1 1 1 1+ + + +

F:2 F:2

+

F:4

F:1

1

F:3

1 1+ + +

F:2

F:3

F:2

F:1

1 1+ = 13

F:2

+

F:4

F:1

1

F:3

1 1+

F:2

Figure 17. Fibonacci 7 Call Tree (sorted)

Here we see what happens when we recursively calculate the 7th Fibonacci Number. The sequence
of the calls is each column from top to bottom, with the leftmost column first.

Note that a Sequence caches the values, so the Fibonacci Sequence (as shown in section 16.3.1, “The
Fibonacci Sequence” is way more efficient.)

Exercise 15.2

A module «Dictionary.pm6» that loads a specified dictionary file (with full path), and returns a hash
of all the words:

File: lib/Dictionary.pm6

use v6;

unit module Dictionary;

sub get-dictionary ($file where $file.IO.r) is export
{
 return $file.IO.lines.grep(* !~~ /\W/).Set;
}

I have chosen a Set - a write once version of a hash where the values can only be True, and the
absence of the key gives False - as that gives shorter code.

Set will be covered in the «Advanced Raku» course.

We can use a hash instead, but the code is more complicated:

343

 my %hash;
 $file.IO.lines.grep(* !~~ /\W/).map({ %hash{$_} = True; });
 return %hash;

Note that I am updating the hash inside the map, and discard the return value of the chained
operation.

And a simple test:

File: dictionary-test

use lib "lib";
use Dictionary;

my $dict = get-dictionary("/usr/share/dict/british-english");

say $dict<friend>; # -> True
say $dict<friendQ>; # -> False

Note that we get (Any) and not False for non-existing values if we use a hash. This doesn’t matter in
this case, as (Any) boolifies to False.

Exercise 15.3

Use «Dictionary.pm6» to look for palindromes in the dictionary.

File: dictionary-palindrome

use lib "lib";
use Dictionary;

my $dict = get-dictionary("/usr/share/dict/british-english");

say "Palindromes:";

for $dict.keys.sort -> $word
{
 say $word if $word eq $word.flip;
}

Exercise 15.4

Use «Dictionary.pm6» to check if the reverse version of every word in the dictionary is also a valid
word.

344

File: dictionary-reverse

use lib "lib";
use Dictionary;

my $dict = get-dictionary("/usr/share/dict/british-english");

for $dict.keys.sort -> $word
{
 my $reverse = $word.flip;

 if $dict{$reverse}
 {
 say "$word -> $reverse";
 }
}

Exercise 15.5

Use «Dictionary.pm6» to check for anagrams of the word given as parameter to the program.

File: anagram

use lib "lib";
use Dictionary;

unit sub MAIN (Str $word where $word !~~ /\W/);

my $dict = get-dictionary("/usr/share/dict/british-english");

my @permutations = $word.comb.permutations;
 # This gives a list of lists (with single characters). Not a list of words.

print "Anagrams:";

for @permutations -> @chars
{
 my $candidate = @chars.join;
 next if $candidate eq $word;
 print " $candidate" if $dict{$candidate};
}
print "\n";

Exercise 15.6

Modifying the program Exercise 15.5 is easy.

The problem is that the program will probably take a very long time to run through a large
dictionary.

345

Chapter 16

Exercise 16.1

(1 .. Inf).eager will fail eventually.

As we discovered in Exercise 3.2, integers are limitless.

So the answer is that the compiler would have run out of memory long before the values
themselves would be a problem.

Exercise 16.2

A Deck of Cards using map instead of explicit loops.

File: deck-map

my @deck = (1 .. 13).map({ "S$_", "C$_", "H$_", "D$_" }).flat;

say @deck.join(",");

$ raku deck-map
S1,C1,H1,D1,S2,C2,H2,D2,S3,C3,H3,D3,S4,C4,H4,D4,S5,C5,H5,D5,S6,C6,H6,D6,S7,C7,H7,D7,S8
,C8,H8,D8,S9,C9,H9,D9,S10,C10,H10,D10,S11,C11,H11,D11,S12,C12,H12,D12,S13,C13,H13,D13

I had to append .flat as we would have gotten a list of lists otherwise.

Note that the order isn’t the same. But as we usually don’t rely on order, this shouldn’t be a
problem.

We can get the original order, but this doesn’t look very nice:

File: deck-map2

my @deck = <S C H D>.map({ $_~"1", $_~"2", $_~"3", $_ ~"4", $_ ~"5", $_~"6",
 $_~"7", $_~"8", $_~"9", $_~"10", $_~"11", $_~"12", $_~"13"
}).flat;

say @deck.join(",");

Things like $_1 is taken as a variable name, so I had to quote it.

$ raku deck-map2
S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,
H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13

346

You may have wondered if it is possible to use two map inside each other. The
answer is yes, but it isn’t possible to get at the outer`map` iterated value.

The mechanism for passing arguments to blocks (as described in section 10.15.1, “-
>”) does not work.

Exercise 16.3

Using gather/take to generate a deck of cards.

File: deck-gather

my $deck := gather
{
 for <S C H D> -> $type # Spade, Club, Heart, Diamond
 {
 take "$type$_" for 1 .. 13;
 }
}

say $deck.join(",");

Note that using gather/take gave us a lazy data structure, but we got rid of that advantage by
collecting all the values at once (done by the join).

Exercise 16.4

Question: Is it possible and/or sensible to use take-rw (see section 16.7.3, “take-rw” to generate a
closure?

Possible: Yes.

Sensible: Perhaps. If the values in questions are objects that represent some sort of underlying data
structure (a kind of binding) - and copying the object destroys that.

Objects are the topic of Chapter 17, Classes, but we’ll not discuss closures there.

Chapter 17

Exercise 17.1

The three metods to set a person’s spouse, father and mother:

347

File: person-spouse (partial)

method set-spouse (Person $spouse)
{
 $!spouse = $spouse;
}

method set-father (Person $father)
{
 $!father = $father;
}

method set-mother (Person $mother)
{
 $!mother = $mother;
}

Exercise 17.2

We could do this:

has Person $.spouse is rw; ①

method set-spouse (Person $spouse)
{
 $!spouse = $spouse;
 $spouse!spouse = self; ②
}

① As we try to change an object attribute from outside the object (from the spouse). We could have
made this work by adding is rw on the spouse field

② My spouse has a spiuse, and that is me.

But that means that everyone can meddle with the inside of our objects, and we certainly don’t
want that!

So instead we add a new method, and use that in addition to the old one:

348

File: person-spouse2 (partial)

method !set-spouse-internal (Person $spouse) ①
{
 $!spouse = $spouse;
}

method set-spouse (Person $spouse) ②
{
 $!spouse = $spouse;
 $spouse!set-spouse-internal(self); ③
}

① We rename the existing «set-spouse», as we need that. And we make it internal (with the !).

② The new «set-spouse».

③ This is the new part. We cannot set the value directly, so we ask «set-spouse-internal» to do it for
us. Note the syntax: ! (an exclamation point) instead of . (a period).

Exercise 17.3

File: person-children (partial)

method add-child (Person $child)
{
 @!child.push($child); ①
}

method get-children ②
{
 @!child;
}

method show-children
{
 @!child ③
 ?? (say "$.name has a child named { .name }." for @!child) ④
 !! say "$.name has no children."; ⑤
}

① Add the new child to our list of children.

② I have added this one, even though it wasn’t part of the exercise.

③ Do we have any children?

④ Yes; print them in a loop.

⑤ No; say so.

349

Exercise 17.4

File: person-parenthood (partial)

method set-father (Person $father)
{
 $!father = $father;
 $father.add-child(self);
}

method set-mother (Person $mother)
{
 $!mother = $mother;
 $mother.add-child(self);
}

Exercise 17.5

The way we calculate a person’s age is wrong (as we assume that every year has 365 days):

submethod age { Int((now.Date - Date.new($.birthdate))/365) }

There are no easy way to do this, so we’ll have to do some coding.

I have written it as a stand alone program, to make it easier to test:

File: age

sub MAIN ($birthdate)
{
 my $now = now.Date;
 my $then = Date.new($birthdate);

 my $delta-year = $now.year - $then.year;
 my $delta-month = $now.month - $then.month;
 my $delta-day = $now.day - $then.day;

 $delta-year-- if $delta-month <= 0 && $delta-day < 0;

 say $delta-year;
}

Note that we cannot use the day-of-year method, as a leap year would screw up the calculation.

350

Appendix 3. Beware of
There are a number of things that is important to beware of

A3.1 length
There is no «length» method.

Use chars (see 7.1.1, “chars”) on strings and elems (see 8.6.1, “elems (List Size)”) on lists et al.

A3.2 Objects are not strings
Match objects should be converted to strings before doing anything with them.

As should IO Objects.

> $*TMPDIR
"/tmp".IO

> $*TMPDIR.say
"/tmp".IO

> $*TMPDIR ~ "/myfile"
/tmp/myfile

They may or may not be converted to strings automatically.

A3.3 See also
See also https://docs.raku.org/language/traps

A3.4 Syntax Summary
A summary of extra special characters used with procedures; in the head, body or invocation
(calling).

With variables

Syntax Where Description See section

:$a Head A named argument 10.13.4, “Named Arguments”

:$a! Head Mandatory named argument 10.13.5, “Named Mandatory
Arguments”

:$a Invocation A named argument 10.13.4, “Named Arguments”

$:a Body A named placeholder variable 10.4.1, “Named Placeholder
Variables”

351

https://docs.raku.org/language/traps

$a: Invocation A method called with procedure syntax 17.3.2, “Colon Syntax”

With Names Arguments

Syntax Where Description See section

:a Invocation Named parameter is True 10.13.6, “Adverbs”

:!a Invocation Named parameter is False 10.13.6, “Adverbs”

Short forms of $, @ and %

Syntax Description See section

$<aa> Looking up a named match See the «Advanced Raku» course

%<aa> looking up a hash value in the state hash
variable %

16.6.2, “$ / @ / % (Anonymous State
Variable)”

Others

Syntax Where Description See section

FOOBAR: Inside or just before
a loop

A label 4.17.5, “LABEL”

:12("12345") anywhere A base12 number 5.1, “Octal, Hex, Binary …”

:13<12345> anyhwere A base13 number 5.1, “Octal, Hex, Binary …”

FOO.BAR: 12, 13; method call Passing arguments 17.3.2, “Colon Syntax”

352

Appendix 4. Raku Background and History

Perl version 1 to 4 were released from 1987 to 1993.

Perl version 5 was released in 1994. It was a complete rewrite, and all the new features killed off
Perl 4 usage. Perl 5 is in active development today.

More information: https://en.wikipedia.org/wiki/Perl

Perl version 6 was conceived in 2000. It started with an invitation to the perl community to propose
changes. The process was extremely time comsuming, as everything was (and still are) done by
volunteers.

It was intended as the new version of Perl, but over the years it became clear that Perl 5 will
continue to live - and it is beeing actively maintained.

https://en.wikipedia.org/wiki/Perl_6

https://en.wikipedia.org/wiki/Raku_(programming_language)

The decision to remame the language as Raku was taken by the lead developers in October 2019,
but it wil ltake some time before the change has been 100% implemented.

6.a and 6.b
The alpha and beta versions were called «6.a» and «6.b»

They should not be used, so please upgrade if you have one of them.

6.c
The first stable version (version 6.c) was released on 25. December 2015.

6.d
The next version (6.d) was released in november 2018.

6.e
This version has not been released yet, but work is under way.

About Versions
For Perl 5 (and most other interpreted languages) you have one version, and that’s it. If you
upgrade to a newer version, that is what you have. This is true for installed modules as well.

353

https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Perl_6
https://en.wikipedia.org/wiki/Raku_(programming_language

In Raku you can have several versions of a module installed. A program will use the newest (the
one with the highest version number) by default, but you can choose to explicitly use a specific
version.

This applies to the language itself as well. 6d has some new features that break compatibility with
6c. You can use the old 6c semantics by explicitly doing:

use v6.c;

If you do that, the code is locked to that version forever. If you use modules, be aware that newer
versions (because you upgrade them) may use features from 6d, and may have a use v6d;

statement.

That works out, as different parts of the prgram can end up using different versions of the same
module. This is however a possible developer nightmare.

The Rakudo implementation gets new features between major versions, but breaking changes are
hidden behind a «PREVIEW» tag. So if you want to use something that will be part of the «6.e»
version use this:

use v6.e.PREVIEW;

Don’t use that in production code. When «6.e» has been released, you should update the use
statement:

use v6.e;

Note that if you specify a version, the code will be run under that version.

If you don’t specify a version, you will get the latest (excluding the «PREVIEW»
versions).

354

Index
@

!
Mandatory Argument, 174
Negation, 28
Private Attribute, 277

!! (?? !!) if-then-else, 65
!!! (Stub Operator), 167
!=, 43
!~ (Negated Smartmatch Operator), 185
(Comment), 18
$

Anonymous State Variable, 267
Anything, 16

$*ARGFILES, 219
$*CWD (Current Directory), 233
$*DEFAULT-READ-ELEMS, 224
$*ERR (STDERR), 216
$*IN (STDIN), 216
$*OUT (STDOUT), 216
$*SPEC.tmpdir, 222
$*TMPDIR, 222
$*TOLERANCE, 78
$*TZ (Time Zone), 245
$/ (Match Object), 189
$?NL, 85
$_ (Procedure Argument), 156
$_ (Topic Variable), 55
%

Anonymous State Variable, 267
Hashes, 16
Modulo Operator, 79

%% (Divisibility Operator), 79
%*ENV, 231
%*ENV<PATH>, 231
&

Code, 16
&&

And, 29
()

Capturing (Regex), 190
Grouping Operator, 31

*
Multiplication Operator, 20
Slurpy Operator, 175
Whatever Star, 124

** (Exponentiation Operator), 80
+

Addition Operator, 19
Numeric Prefix, 41

++
Decrement Operator, 20
Increment Operator, 20

, (List Operator), 113
- (Subtraction Operator), 19
--> (Return Value Constraint), 161
--doc, 163
-> (Read Only Block Parameters), 179
.

Method Call, 279
Public Attribute, 277

.* (method invocation), 306

.+ (method invocation), 305

.. (Ranges), 51, 257

...
Sequences, 260
Stub Operator, 167
Stubbed Class, 278

.? (method invocation), 305

.orig (Regex), 192

.postmatch (Regex), 192

.prematch (Regex), 192

.target (Regex), 192
/ (Division Operator), 20
/.../ (Regex), 184
// (Defined Or Operator), 30
:= (Binding), 21
:D (Defined Adverb), 39
:U (Undefined Adverb), 40
:delete (Hashes), 150
:exists (Hashes), 149
:g (global), 198
:global, 198
:i (:ignorecase), 197
:ignorecase, 197
:ii (:samecase), 200
:nth (Regex), 201
:samecase, 200
:x (Regex), 201
<, 43
<()> (Capture Markers) Regex, 191

355

<-> (Read Write Block Parameters), 179
<=, 43
<=> (Numeric Comparison), 45
<xxx> (Quote Word), 115
= (Assignment Operator), 21
=:= (Container Identity Operator), 46
== (Numeric Equal operator), 43
===

Objects, 285
Value Identity Operator, 46

=> (Pair Constructor), 141
=~= (Approximately-equal Operator), 78
>, 43
>=, 43
? (Boolean Prefix), 28
?&, 41
?? (?? !!) if-then-else, 65
??? (Stub Operator), 167
?^, 41
?|, 41
@

Anonymous State Variable, 267
Arrays, 16

@*ARGS, 161
@_, 156
[]

Array Constructor, 114
Non-capturing grouping (Regex), 191

^Int (Range), 57
^^ (Exclusive Or), 30
^can, 301
^mro (Method Resolution Order), 35
^name, 34
_ (in numbers), 73
{ }

Block Constructor, 51
Hash Constructor, 143

|
Flattening Operator, 122

||
Or, 29

~
String Concatenation Operator, 24
String Prefix, 42

~~ (Smartmatch Operator), 185

∞ (Infinity), 38

A

Addition Operator (+), 19
Administration Modules, 205
Adverbial Syntax, 174
Adverbs, 174
And (&&), 29
Anonymous State Variable

$, 267
%, 267
@, 267

Any, 37
Anything ($), 16
Approximately-equal Operator (=~=), 78
Array Constructor [], 114
Array Slice, 120
Arrays

@, 16
Shaped, 128

Arrays and Lists, 113
Assignment Operator (=), 21
after, 46
also

does (Roles), 300
is (Inheritance), 298

and, 29
anon, 158
antipair (Pair), 142
antipairs (Hashes), 149
append, 119

B

BUILD, 282
Backwards References (Regex), 196
Beware of, 351
Binary

Binary Large Object (Blob), 227
Files, 225
Numbers, 71

Binary Files
Detecting, 229

Binding (:=), 21
Blob (Binary Large Object), 227
Block Constructor { }, 51

356

Blocks, 51, 179
Bolean

Operators, 28
Bool, 28, 41
Boolean, 27
Buf (Buffer), 226
base, 71
before, 45
bless, 282
but

Array, 139
Hash, 153
Objects, 300
Scalar, 47

C

CPAN, 206
Capture Markers <()>, 191
Character Classes (Regex), 192
Classes, 277
Closures, 274
Code (&), 16
Colon Synatx for Method calls, 280
Colon Syntax (Methods), 72
Command Line Completion, 7
Command Line Options, 9
Comments (#), 18
Comparison Operators, 43
Compile Time Errors, 9
Constants, 26
Container, 15
Container Identity Operator (=:=), 46
Current Directory ($*CWD), 233
ceiling, 76
chars, 97
chomp, 86
chop, 85
chr (Unicode), 100
chrs (Unicode), 100
class, 277
close (File Close), 216
cmp (Smart Comparison), 44
codes, 98
comb, 102
combinations, 138

constant, 26
contains (Partial Strings), 186

D

Date, 240
Date and Time, 239
DateTime, 242
Deck of Cards, 271
Decrement Operator (--), 20
Defined Or Operator (//), 30
Delegation (handles), 307
Denominator, 75
Directories, 231
Directory

Current ($*CWD), 233
Make (mkdir), 236
Remove (rmdir), 237
Test (IO.d), 224

Divisibility Operator
%% (Numeric), 79

Division Operator
/, 20
div (Int), 20

Docker, 309
deepmap, 125
defined, 40
dir, 231
div (Integer division Operator), 20
do, 66
docs.raku.org, 10
does, 300

Hash, 153
Objects, 301
Scalar, 49

E

Eager, 257
Embedded Comments, 18
Empty, 115
Error Messages, 9
Exclusive Or

^^, 30
xor, 30

Exercise
1.1, 7, 313

357

1.2, 9, 313
1.3, 13, 313
2.1, 21, 313
2.2, 26, 314
2.3, 30, 314
3.1, 39, 314
3.2, 46, 315
4.1, 54, 315
4.2, 55, 315
4.3, 69, 316
4.4, 70
5.1, 71, 316
5.2, 74, 317
5.3, 78, 317
5.4, 80, 318
5.5, 83, 319
5.6, 83, 319
6.1, 96, 320
7.1, 100, 320
7.2, 102, 321
7.3, 103, 321
7.4, 107, 322
8.1, 124, 323
8.2, 131, 323
8.3, 133, 324
8.4, 134, 325
8.5, 136, 325
8.6, 136, 325
8.7, 137, 325
9.1, 152, 327
9.2, 153, 327
10.1, 165, 327
10.2, 166, 328
10.3, 179, 329
11.1, 196, 329
11.2, 202, 330
11.3, 203, 331
12.1, 209, 332
12.2, 211, 332
13.1, 216, 333
13.2, 228, 334
13.3, 233, 334
13.4, 233, 336
13.5, 234, 337
13.6, 236, 338

14.1, 242, 340
14.2, 242, 341
15.1, 253, 342
15.2, 254, 343
15.3, 254, 344
15.4, 254, 344
15.5, 254, 345
15.6, 254, 345
16.1, 259, 346
16.2, 272, 346
16.3, 272, 347
16.4, 275, 347
17.1, 287, 347
17.2, 289, 348
17.3, 289, 349
17.4, 290, 350
17.5, 299, 350

Exponentiation Operator
**, 80
exp, 80

e, 74
eager, 259
elems, 117
else, 61
elsif, 61
end, 117
ends-with (Partial Strings), 188
eq (String Equal operator), 43
eqv (Equivalence), 285
exp (Exponentiation Operator), 80
expmod, 81

F

FALLBACK (method), 302
Fallback Method, 302
False, 27
Fibonacci

Numbers, 167
Sequence, 261
Timing, 251

File
Close (close), 216
Open (open), 216
Remove (unlink), 222
Test (IO.e IO.r …), 224

358

File tests, 224
Files and Directories, 213
Flattening Operator (|), 122
Flip-Flop Sequence, 263
Floating Point Numbers, 73
Frugal Regex (non-greedy), 195
fc (Fold Case), 106
first, 131
flat, 123
flip, 103
floor, 76
fmt, 94
for, 53

G

GitHub, 206
Graphemes (Unicode), 97
Grouping Operator (), 31
gather, 268
gcd (Greatest Common Divisor), 77
ge, 43
get, 219
getc, 222
gist, 87
given, 62
grep, 130, 204
gt, 43

H

Hash, 142
Hash (method, 152
Hash Constructor { }, 143
Hashes

%, 16
antipairs, 149
delete, 150
exists, 149
invert, 148
keys, 144
pairs, 149
values, 145

Heredocs, 110
Hexadecimal Numers, 71
handles (Delegation), 307
has, 277

head, 131

I

INIT, 247
IO

IO.d (Directory Test), 224
IO.e (File Exist Test), 224
IO.lines, 213
IO.r (File Readable Test), 224
IO.w (File Writable Test), 224
IO.words, 214

Increment Operator (++), 20
Inf (Infinity), 38
Infinite Loops, 57
Infinity, 38
Inheritance, 296

is, 297
Inheritance Tree

Int, 35
Str, 95

Instant, 240
Int, 34

Inheritance Tree, 35
if, 61
if-then-else (?? !!), 65
indent, 112
index (Partial Strings), 186
indices(Partial Strings), 187
indir, 232
infinite (Range), 258
invert (Hashes), 148
is (Inheritance), 297
is copy (Procedure), 170
is export, 249
is required, 174
is rw

Block, 179
Class, 281
Procedure, 170

is-int (Range), 259
is-lazy, 257
is-prime, 78
isNaN, 78
isa, 47

359

J

join, 101

K

key (Pair), 142
keyof (Hash), 146
keys (Hashes), 144
kv, 145

L

LABEL, 69
Lazy, 257
Leap Seconds, 239
Linenoise, 7
List Coersion, 258
List Operator (,), 113
List Repetition Operator (xx), 129
List Repetition Operator and Sequences, 264
Loop Manipulation, 67
Loop Summary, 60
last, 68
lazy, 258, 262
lazy vs gather/take, 271
lc (Lower Case), 105
lcm (Least Common Multiple), 77
le, 43
leg (String Comparison), 45
length (not implemented), 351
lines, 214
lines (IO.lines), 213
lines (Method), 216
log, 81
log10, 81
loop, 52
lt, 43

M

MAIN, 162
Match Object ($/), 189
Math::Matrix (Module), 129
Math::Trig (Module), 82, 211
Matrix, 129
Method Call (.), 279
Methods

Colon Syntax, 72

MoarVM, 5
Module Loading

use, 209
Module Manager

panda, 205
zef, 205

Modules, 205
Modules, Administration, 205
Modulo Operator

% (Numeric), 79
mod (Int), 79

Multi-line Comments, 18
Multi-line Strings (Heredocs), 110
Multiple Dispatch, 166, 301
Multiplication Operator (*), 20
m/.../ (Regex), 185
map, 123
max, 132
method, 278
min, 132
minmax (Range Constructor), 260
mkdir (Make Directory), 236
mod (Modulo Operator), 79
msb (Most Significant Binary), 77
multi

Methods, 301
Procedures, 166

my, 17

N

NQP, 5
NaN (Not a Number), 77
Negated Smartmatch Operator (!~), 185
Negation

!, 28
not, 28

Newlines, 85
Nil, 37
Non-capturing grouping (Regex) [], 191
Non-greedy Regex, 195
Not a Number (NaN), 77
Num, 73
Numbers, 25, 71
Numerator, 75
Numeric, 41

360

Numerical Operators, 19
name (^name), 34
narrow, 75
ne, 43
new, 277
next, 68
not (Negation), 28
note, 217
now, 239
nude, 75

O

Object (Everything is an Object), 36
Object Comparison, 284
Octal Numbers, 71
One Liners, 8
Operator Precedence, 21
Operators

Bolean, 28
Or (||), 29
Other Operators, 80
Output, 89
of

keyword, 33
method, 34

of (Hash), 146
once, 67
open (File Open), 216
or, 29
ord (Unicode), 99
ords (Unicode), 99
orwith, 64

P

Pair, 141
Constructor (=>), 141
antipair, 142
key, 142
value, 142

Pair and Hashes, 141
Partial Strings

contains, 186
ends-with, 188
index, 186
indices, 187

rindex, 187
starts-with, 188
substr, 103
substr-rw, 104

Path (%*ENV<PATH>), 231
Perl 6, 5
Phasers, 247
Placeholder Variables, 124, 156
Precompilation, 205
Preventing Runtime errors with try, 42
Prime Numbers, 78
Private Methods, 294
Procedures, 155
Public Attribute (.), 277
Public Class Variables, 281
p6doc, 10
pairs (Hashes), 149
panda (Module Manager), 205
parse-base, 72
perl, 88
permutations, 137
pi, 27, 73
pick, 133
pm6 (Filename Extention), 249
pop, 116
pred, 108
prepend, 119
print, 15, 91
printf, 91
prompt, 94, 218
push, 116
put, 90

Q

Q (Quoting), 109
Queue, 118
Quoting, 23, 109
q (Quoting)), 109
q:c (Quoting), 109
qq (Quoting), 109
qqw (Quote Words with interpolation), 110
qw (Quote Words), 110

R

REPL, 6

361

Raku Background and History, 353
Rakudo, 5
Rakudo Star, 5
Random Primes, 177
Random Values, 133
Range Constructor

.., 257
minmax, 260

Range Operator (..), 257
Ranges, 51, 257
Ranges and Sequences, 257
Rat, 74
Rational Numbers, 74
Reading Files, 213
Recursion, 168
Regex (type), 186
Regex Adverbs, 199
Regex Intro, 183
Return Value Constraint

-->, 161
returns, 161

Roles, 299
Rotate 13, 202
Rounding, 76
Running Programs, 9
Runtime Errors, 9
rand, 133
read, 226
readchars), 223
rebless, 299
redo, 69
repeat until, 59
repeat while, 59
repeated, 129
return, 159
return-rw, 160
returns (Return Value Constraint), 161
reverse, 126
rindex (Partial Strings), 187
rlwrap, 8
rmdir (Remove Directory), 237
role, 299
roll, 135
rotate, 119
round, 76

rx/.../ (Regex), 197

S

S/.../.../ (String Substitution), 199
STDERR ($*ERR), 216
STDIN ($*IN), 216
STDOUT ($*OUT), 216
Scalars ($), 16
Sequence Operator (...), 260
Sequences, 260
Shaped Array, 128
Shaped Hash, 147
Sigilless variables, 27
Sigils, 15
Slurpy Operator (*), 175
Smartmatch Operator (~~), 185
Special Values, 37
Stack, 118
State Variable (state), 265
Str, 34, 42

Inheritance Tree, 95
Str (Method), 87
String Concatenation (~), 24
String Repetition Operator (x), 107
String Substitution, 197

subst, 198
Stringification, 86
Strings, 23, 97
Strong Typing, 33
Stub Operator

!!!, 167
..., 167
???, 167

Stubbed Class (...), 278
Subtraction Operator (-), 19
s/.../.../ (String Substitution), 197
say, 15, 89
say on Object, 291
self, 281
shape, 128
shift, 116
sign, 75
slurp, 215
so, 28, 41
sort, 125

362

splice, 121
split, 101, 204
sprintf, 94
spurt, 218
sqrt, 80
squish, 129
srand, 136
starts-with (Partial Strings), 188
state (State Variable), 265
submethod, 298
subst (String Substitution), 198
substr (Partial Strings), 103
substr-rw (Partial Strings), 104
succ, 108
sum, 151

T

TR/.../.../ (Transliteration), 203
Temporary Files, 221
Time Zones, 245
Time-Code (Module), 249
Timing, 246

Code, 247
Fibonacci, 251
Programs, 246

Topic Variable ($_), 55
Transliteration, 201
Trigonometric Functions, 82
True, 27
Twigils, 16
Type Constraints

Procedure Arguments, 158
Procedure Return Value, 161

Type System, 33
Typed Array, 127
Typed Hash, 146
tail, 132
take, 268
take-rw, 273
tau, 74
tc (Title Case), 105
tclc (Title Case Lower Case), 106
time, 239
tmpdir ($*SPEC.tmpdir), 222
tr/.../.../ (Transliteration), 202

trans (Transliteration), 202
trim, 203
trim-leading, 203
trim-trailing, 203
truncate, 76
trusts

Classes, 294
Methods, 296

try, 42

U

Unicode, 97
Graphemes, 97
Numbers, 72
chr, 100
chrs, 100
ord, 99
ords, 99
unicmp, 44
uniname, 98
uninames, 99
uniparse, 99

uc (Upper Case), 106
unicmp (Unicode), 44
uniname (Unicode), 98
uninames (Unicode), 99
uniparse (Unicode), 99
uniprop, 194
uniprops, 195
unique, 129
unit

unit class, 292
unit module, 249
unit procedure, 162

unless, 62
unlink (Remove File), 222
unshift, 116
until, 58
use

Module Loading, 209
use lib, 250

use v6, 10

V

VAR, 35

363

Value Identity Operator (===), 46
Values, 23
Variable Names, 25
Variables, 15
value

Pair, 142
values (Hashes), 145

W

WHAT, 34
WHY, 163
Whatever Star

*, 124
Writing a Module, 249
when, 66
while, 57
with, 62
without, 65
wordcase, 106
words, 101
words (IO.words), 214
write, 228

X

x (String Repetition Operator), 107
xor (Exclusive Or), 30
xx (List Repetition Operator), 129

Y

Yada, yada, yada Operator, 167
yada, 167

Z

zef (Module Manager), 205

364

	Beginning Raku
	Table of Contents
	Introduction
	The Little Print
	Reading Tips

	Content
	Chapter 1. About Raku
	1.1. Rakudo
	1.2. Running Raku in the browser
	1.3. REPL
	1.4. One Liners
	1.5. Running Programs
	1.6. Error messages
	1.7. use v6
	1.8. Documentation
	1.9. More Information
	1.10. Speed

	Chapter 2. Variables, Operators, Values and Procedures.
	2.1. Output with say and print
	2.2. Variables
	2.3. Comments
	2.4. Non-destructive operators
	2.5. Numerical Operators
	2.6. Operator Precedence
	2.7. Values
	2.8. Variable Names
	2.9. constant
	2.10. Sigilless variables
	2.11. True and False
	2.12. //

	Chapter 3. The Type System
	3.1. Strong Typing
	3.2. ^mro (Method Resolution Order)
	3.3. Everything is an Object
	3.4. Special Values
	3.5. :D (Defined Adverb)
	3.6. Type Coersion
	3.7. Comparison Operators
	3.8. but (True and False, but …)

	Chapter 4. Control Flow
	4.1. Blocks
	4.2. Ranges (A Short Introduction)
	4.3. loop
	4.4. for
	4.5. Infinite Loops
	4.6. while
	4.7. until
	4.8. repeat while
	4.9. repeat until
	4.10. Loop Summary
	4.11. if
	4.12. given
	4.13. with
	4.14. ?? !!
	4.15. do
	4.16. when
	4.17. Loop Manipulation

	Chapter 5. Numbers
	5.1. Octal, Hex, Binary …
	5.2. Unicode Numbers
	5.3. Not a Number
	5.4. N_U_M_B_E_R_S
	5.5. Floating Point Numbers
	5.6. Rational Numbers
	5.7. narrow
	5.8. sign
	5.9. Rounding
	5.10. NaN (Not a Number)
	5.11. =~=
	5.12. is-prime (Prime Numbers)
	5.13. Modulo and variants
	5.14. Other Operators

	Chapter 6. Basic Input and Output
	6.1. Newlines
	6.2. Stringification
	6.3. Output
	6.4. printf
	6.5. Input from the user

	Chapter 7. Strings
	7.1. Unicode
	7.2. join
	7.3. split
	7.4. words
	7.5. comb
	7.6. flip
	7.7. substr (Partial Strings)
	7.8. Changing Case
	7.9. x (String Repetition Operator)
	7.10. succ
	7.11. pred
	7.12. Quoting
	7.13. Multi-line Strings (Heredocs)

	Chapter 8. Arrays and Lists
	8.1. , (List Operator)
	8.2. [] (Array Constructor)
	8.3. <xxx> (Quote Word)
	8.4. Empty
	8.5. List Elements
	8.6. pop / push / shift / unshift
	8.7. rotate (List Rotation)
	8.8. List of Lists
	8.9. Flattening Lists
	8.10. Array Slice
	8.11. splice
	8.12. map
	8.13. sort
	8.14. reverse
	8.15. Array with Limits
	8.16. Typed Array
	8.17. Shaped Array
	8.18. unique (Lists Without Duplicates)
	8.19. xx (List Repetition Operator)
	8.20. List Selection
	8.21. min / max
	8.22. Random Values
	8.23. permutations
	8.24. combinations
	8.25. but (Array)

	Chapter 9. Pair and Hashes
	9.1. Pair
	9.2. Hash
	9.3. Hash Constructor { }
	9.4. Hash Assignment and Values
	9.5. keys
	9.6. values
	9.7. kv (keys + values)
	9.8. Typed Hash
	9.9. Shaped Hash
	9.10. invert
	9.11. antipairs
	9.12. Hash Slices
	9.13. Hash Lookup
	9.14. Hash Deletion
	9.15. Hash Duplicate Values
	9.16. Hash Usage
	9.17. Grep and Smartmatch
	9.18. Hash (method)
	9.19. but (Hash)

	Chapter 10. Procedures
	10.1. Procedures Without Arguments
	10.2. Procedures With Arguments
	10.3. @_
	10.4. Placeholder Variables
	10.5. Procedures as variables
	10.6. Type Constraints
	10.7. return
	10.8. @*ARGS
	10.9. MAIN
	10.10. WHY
	10.11. IntStr Gotcha
	10.12. Multiple Dispatch
	10.13. Procedure Arguments
	10.14. * (Slurpy Operator)
	10.15. Blocks Revisited
	10.16. Calling a procedure specified in a variable
	10.17. Procedures in Procedures

	Chapter 11. Regex Intro
	11.1. What is a Regex?
	11.2. Making a Regex
	11.3. ~~ (Smartmatch Operator)
	11.4. Partial Strings
	11.5. Beginning or end of a string
	11.6. Regex Metacharacters
	11.7. $/ (Match Object)
	11.8. Special Characters
	11.9. Capturing and Grouping
	11.10. Character Classes
	11.11. Custom Character Classes
	11.12. Non-greedy
	11.13. Backwards References
	11.14. Using a Regex
	11.15. String Substitution
	11.16. Substitution Tuning
	11.17. Transliteration
	11.18. trim / trim-leading / trim-trailing
	11.19. split and grep
	11.20. Comments

	Chapter 12. Modules
	12.1. Precompilation
	12.2. Module Administration with zef
	12.3. Using Modules (use)
	12.4. Writing Modules

	Chapter 13. Files and Directories
	13.1. Reading Files
	13.2. slurp
	13.3. open / close
	13.4. INPUT OUTPUT - IO
	13.5. Writing Files
	13.6. get
	13.7. Temporary Files
	13.8. File tests
	13.9. Binary Files
	13.10. Directories

	Chapter 14. Date and Time
	14.1. time
	14.2. now
	14.3. Leap Seconds
	14.4. Instant
	14.5. Timing

	Chapter 15. Writing a Module
	15.1. unit module
	15.2. is export
	15.3. pm6
	15.4. use lib
	15.5. Timing Fibonacci
	15.6. Dictionaries

	Chapter 16. Ranges and Sequences
	16.1. Ranges
	16.2. lazy
	16.3. Sequences
	16.4. state
	16.5. Truly Random Flip-Flop
	16.6. Flip-Flop Problems
	16.7. gather / take
	16.8. Closures

	Chapter 17. Classes
	17.1. has
	17.2. new
	17.3. method
	17.4. Named Arguments
	17.5. Public Class Variables
	17.6. self
	17.7. Custom «new»
	17.8. Custom BUILD
	17.9. Wrong Start Value
	17.10. Object Comparison
	17.11. A Person Class
	17.12. Output
	17.13. Private Methods
	17.14. Inheritance
	17.15. Roles
	17.16. Multiple Dispatch
	17.17. A Fallback Method
	17.18. .?
	17.19. .+
	17.20. .*
	17.21. handles (Delegation)
	17.22. Calling a method specified in a variable

	Appendix 1. Docker
	Installing Rakudo Star with Docker

	Appendix 2. Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

	Appendix 3. Beware of
	A3.1 length
	A3.2 Objects are not strings
	A3.3 See also
	A3.4 Syntax Summary

	Appendix 4. Raku Background and History
	6.a and 6.b
	6.c
	6.d
	6.e
	About Versions

	Index

